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CHAPTER 2

VECTOR ANALYSIS IN

CURVED COORDINATES

AND TENSORS

In Chapter 1 we restricted ourselves almost completely to rectangular or Cartesian coordi-
nate systems. A Cartesian coordinate system offers the unique advantage that all three unit
vectors,x̂, ŷ, andẑ, are constant in direction as well as in magnitude. We did introduce the
radial distancer , but even this was treated as a function ofx, y, andz. Unfortunately, not
all physical problems are well adapted to a solution in Cartesian coordinates. For instance,
if we have a central force problem,F= r̂F(r), such as gravitational or electrostatic force,
Cartesian coordinates may be unusually inappropriate. Such a problem demands the use of
a coordinate system in which the radial distance is taken to be one of the coordinates, that
is, spherical polar coordinates.

The point is that the coordinate system should be chosen to fit the problem, to exploit
any constraint or symmetry present in it. Then it is likely to be more readily soluble than if
we had forced it into a Cartesian framework.

Naturally, there is a price that must be paid for the use of a non-Cartesian coordinate
system. We have not yet written expressions for gradient, divergence, or curl in any of the
non-Cartesian coordinate systems. Such expressions are developed in general form in Sec-
tion 2.2. First, we develop a system of curvilinear coordinates, a general system that may
be specialized to any of the particular systems of interest. We shall specialize to circular
cylindrical coordinates in Section 2.4 and to spherical polar coordinates in Section 2.5.

2.1 ORTHOGONAL COORDINATES IN R3

In Cartesian coordinates we deal with three mutually perpendicular families of planes:
x = constant,y = constant, andz= constant. Imagine that we superimpose on this system
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104 Chapter 2 Vector Analysis in Curved Coordinates and Tensors

three other families of surfacesqi(x, y, z), i = 1,2,3. The surfaces of any one familyqi
need not be parallel to each other and they need not be planes. If this is difficult to visualize,
the figure of a specific coordinate system, such as Fig. 2.3, may be helpful. The three new
families of surfaces need not be mutually perpendicular, but for simplicity we impose this
condition (Eq. (2.7)) because orthogonal coordinates are common in physical applications.
This orthogonality has many advantages: Orthogonal coordinates are almost like Cartesian
coordinates where infinitesimal areas and volumes are products of coordinate differentials.

In this section we develop the general formalism of orthogonal coordinates, derive from
the geometry the coordinate differentials, and use them for line, area, and volume elements
in multiple integrals and vector operators. We may describe any point(x, y, z) as the inter-
section of three planes in Cartesian coordinates or as the intersection of the three surfaces
that form our new, curvilinear coordinates. Describing the curvilinear coordinate surfaces
by q1= constant,q2= constant,q3= constant, we may identify our point by(q1, q2, q3)

as well as by(x, y, z):

General curvilinear coordinates
q1, q2, q3

Circular cylindrical coordinates
ρ,ϕ, z

x = x(q1, q2, q3)

y = y(q1, q2, q3)

z = z(q1, q2, q3)

−∞ < x = ρ cosϕ <∞
−∞ < y = ρ sinϕ <∞
−∞ < z= z <∞

(2.1)

specifyingx, y, z in terms ofq1, q2, q3 and the inverse relations

q1= q1(x, y, z) 0 � ρ =
(
x2+ y2

)1/2
<∞

q2= q2(x, y, z) 0 � ϕ = arctan(y/x) < 2π
q3= q3(x, y, z) −∞ < z= z <∞.

(2.2)

As a specific illustration of the general, abstractq1, q2, q3, the transformation equations
for circular cylindrical coordinates (Section 2.4) are included in Eqs. (2.1) and (2.2). With
each family of surfacesqi = constant, we can associate a unit vectorq̂i normal to the
surfaceqi = constant and in the direction of increasingqi . In general, these unit vectors
will depend on the position in space. Then a vectorV may be written

V = q̂1V1+ q̂2V2+ q̂3V3, (2.3)

but the coordinate or position vector is different in general,

r 
= q̂1q1+ q̂2q2+ q̂3q3,

as the special casesr = r r̂ for spherical polar coordinates andr = ρρ̂ + zẑ for cylindri-
cal coordinates demonstrate. Theq̂i are normalized tôq2

i = 1 and form a right-handed
coordinate system with volumêq1 · (q̂2× q̂3) > 0.

Differentiation ofx in Eqs. (2.1) leads to the total variation or differential

dx = ∂x

∂q1
dq1+

∂x

∂q2
dq2+

∂x

∂q3
dq3, (2.4)

and similarly for differentiation ofy and z. In vector notationdr =∑
i
∂r
∂qi

dqi . From
the Pythagorean theorem in Cartesian coordinates the square of the distance between two
neighboring points is

ds2= dx2+ dy2+ dz2.
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Substitutingdr shows that in our curvilinear coordinate space the square of the distance
element can be written as a quadratic form in the differentialsdqi :

ds2 = dr · dr = dr2=
∑

ij

∂r
∂qi

· ∂r
∂qj

dqi dqj

= g11dq
2
1 + g12dq1dq2+ g13dq1dq3

+ g21dq2dq1+ g22dq
2
2 + g23dq2dq3

+ g31dq3dq1+ g32dq3dq2+ g33dq
2
3

=
∑

ij

gij dqi dqj , (2.5)

where nonzero mixed termsdqi dqj with i 
= j signal that these coordinates are not or-
thogonal, that is, that the tangential directionsq̂i are not mutually orthogonal. Spaces for
which Eq. (2.5) is a legitimate expression are calledmetricor Riemannian.

Writing Eq. (2.5) more explicitly, we see that

gij (q1, q2, q3)=
∂x

∂qi

∂x

∂qj
+ ∂y

∂qi

∂y

∂qj
+ ∂z

∂qi

∂z

∂qj
= ∂r

∂qi
· ∂r
∂qj

(2.6)

are scalar products of thetangent vectors ∂r
∂qi

to the curvesr for qj = const., j 
= i. These
coefficient functionsgij , which we now proceed to investigate, may be viewed as speci-
fying the nature of the coordinate system(q1, q2, q3). Collectively these coefficients are
referred to as themetric and in Section 2.10 will be shown to form a second-rank sym-
metric tensor.1 In general relativity the metric components are determined by the proper-
ties of matter; that is, thegij are solutions of Einstein’s field equations with the energy–
momentum tensor as driving term; this may be articulated as “geometry is merged with
physics.”

At usual we limit ourselves to orthogonal (mutually perpendicular surfaces) coordinate
systems, which means (see Exercise 2.1.1)2

gij = 0, i 
= j, (2.7)

and q̂i · q̂j = δij . (Nonorthogonal coordinate systems are considered in some detail in
Sections 2.10 and 2.11 in the framework of tensor analysis.) Now, to simplify the notation,
we writegii = h2

i > 0, so

ds2= (h1dq1)
2+ (h2dq2)

2+ (h3dq3)
2=

∑

i

(hi dqi)
2. (2.8)

1The tensor nature of the set ofgij ’s follows from the quotient rule (Section 2.8). Then the tensor transformation law yields
Eq. (2.5).
2In relativistic cosmology the nondiagonal elements of the metricgij are usually set equal to zero as a consequence of physical
assumptions such as no rotation, as fordϕ dt, dθ dt .
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The specific orthogonal coordinate systems are described in subsequent sections by spec-
ifying these (positive) scale factorsh1, h2, andh3. Conversely, the scale factors may be
conveniently identified by the relation

dsi = hi dqi,
∂r
∂qi

= hi q̂i (2.9)

for any givendqi , holding all otherq constant. Here,dsi is a differential length along the
directionq̂i . Note that the three curvilinear coordinatesq1, q2, q3 need not be lengths. The
scale factorshi may depend onq and they may have dimensions. Theproduct hi dqi must
have a dimension of length. The differential distance vectordr may be written

dr = h1dq1 q̂1+ h2dq2 q̂2+ h3dq3 q̂3=
∑

i

hi dqi q̂i .

Using this curvilinear component form, we find that a line integral becomes

∫
V · dr =

∑

i

∫
Vihi dqi .

From Eqs. (2.9) we may immediately develop the area and volume elements

dσij = dsi dsj = hihj dqi dqj (2.10)

and

dτ = ds1ds2ds3= h1h2h3dq1dq2dq3. (2.11)

The expressions in Eqs. (2.10) and (2.11) agree, of course, with the results of using
the transformation equations, Eq. (2.1), and Jacobians (described shortly; see also Exer-
cise 2.1.5).

From Eq. (2.10) an area element may be expanded:

dσ = ds2ds3 q̂1+ ds3ds1 q̂2+ ds1ds2 q̂3

= h2h3dq2dq3 q̂1+ h3h1dq3dq1 q̂2

+ h1h2dq1dq2 q̂3.

A surface integral becomes

∫
V · dσ =

∫
V1h2h3dq2dq3+

∫
V2h3h1dq3dq1

+
∫

V3h1h2dq1dq2.

(Examples of such line and surface integrals appear in Sections 2.4 and 2.5.)



2.1 Orthogonal Coordinates in R3 107

In anticipation of the new forms of equations for vectorcalculus that appear in the
next section, let us emphasize that vectoralgebra is the same in orthogonal curvilinear
coordinates as in Cartesian coordinates. Specifically, for the dot product,

A ·B =
∑

ik

Ai q̂i · q̂kBk =
∑

ik

AiBkδik

=
∑

i

AiBi =A1B1+A2B2+A3B3, (2.12)

where the subscripts indicate curvilinear components. For the cross product,

A ×B=

∣∣∣∣∣∣

q̂1 q̂2 q̂3
A1 A2 A3
B1 B2 B3

∣∣∣∣∣∣
, (2.13)

as in Eq. (1.40).
Previously, we specialized to locally rectangular coordinates that are adapted to special

symmetries. Let us now briefly look at the more general case, where the coordinates are
not necessarily orthogonal. Surface and volume elements are part of multiple integrals,
which are common in physical applications, such as center of mass determinations and
moments of inertia. Typically, we choose coordinates according to the symmetry of the
particular problem. In Chapter 1 we used Gauss’ theorem to transform a volume integral
into a surface integral and Stokes’ theorem to transform a surface integral into a line in-
tegral. For orthogonal coordinates, the surface and volume elements are simply products
of the line elementshi dqi (see Eqs. (2.10) and (2.11)). For the general case, we use the
geometric meaning of∂r/∂qi in Eq. (2.5) as tangent vectors. We start with the Cartesian
surface elementdx dy, which becomes an infinitesimal rectangle in the new coordinates
q1, q2 formed by the two incremental vectors

dr1= r(q1+ dq1, q2)− r(q1, q2)=
∂r
∂q1

dq1,

dr2= r(q1, q2+ dq2)− r(q1, q2)=
∂r
∂q2

dq2, (2.14)

whose area is thez-component of their cross product, or

dx dy = dr1× dr2
∣∣
z
=
[
∂x

∂q1

∂y

∂q2
− ∂x

∂q2

∂y

∂q1

]
dq1dq2

=
∣∣∣∣∣

∂x
∂q1

∂x
∂q2

∂y
∂q1

∂y
∂q2

∣∣∣∣∣dq1dq2. (2.15)

The transformation coefficient in determinant form is called theJacobian.
Similarly, the volume elementdx dy dz becomes the triple scalar product of the three in-

finitesimal displacement vectorsdr i = dqi
∂r
∂qi

along theqi directionsq̂i , which, according
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to Section 1.5, takes on the form

dx dy dz=

∣∣∣∣∣∣∣

∂x
∂q1

∂x
∂q2

∂x
∂q3

∂y
∂q1

∂y
∂q2

∂y
∂q3

∂z
∂q1

∂z
∂q2

∂z
∂q3

∣∣∣∣∣∣∣
dq1dq2dq3. (2.16)

Here the determinant is also called the Jacobian, and so on in higher dimensions.
For orthogonal coordinates the Jacobians simplify to products of the orthogonal vec-

tors in Eq. (2.9). It follows that they are just products of thehi ; for example, the volume
Jacobian becomes

h1h2h3(q̂1× q̂2) · q̂3= h1h2h3,

and so on.

Example 2.1.1 JACOBIANS FOR POLAR COORDINATES

Let us illustrate the transformation of the Cartesian two-dimensional volume elementdx dy

to polar coordinatesρ,ϕ, with x = ρ cosϕ, y = ρ sinϕ. (See also Section 2.4.) Here,

dxdy =
∣∣∣∣∣

∂x
∂ρ

∂x
∂ϕ

∂y
∂ρ

∂y
∂ϕ

∣∣∣∣∣dρ dϕ =
∣∣∣∣
cosϕ −ρ sinϕ
sinϕ ρ cosϕ

∣∣∣∣dρ dϕ = ρ dρ dϕ.

Similarly, in spherical coordinates (see Section 2.5) we get, fromx = r sinθ cosϕ, y =
r sinθ sinϕ, z= r cosθ , the Jacobian

J =

∣∣∣∣∣∣∣

∂x
∂r

∂x
∂θ

∂x
∂ϕ

∂y
∂r

∂y
∂θ

∂y
∂ϕ

∂z
∂r

∂z
∂θ

∂z
∂ϕ

∣∣∣∣∣∣∣
=

∣∣∣∣∣∣

sinθ cosϕ r cosθ cosϕ −r sinθ sinϕ
sinθ sinϕ r cosθ sinϕ r sinθ cosϕ

cosθ −r sinθ 0

∣∣∣∣∣∣

= cosθ

∣∣∣∣
r cosθ cosϕ −r sinθ sinϕ
r cosθ sinϕ r sinθ cosϕ

∣∣∣∣+ r sinθ

∣∣∣∣
sinθ cosϕ −r sinθ sinϕ
sinθ sinϕ r sinθ cosϕ

∣∣∣∣

= r2(cos2 θ sinθ + sin3 θ
)
= r2 sinθ

by expanding the determinant along the third line. Hence the volume element becomes
dx dy dz= r2dr sinθ dθ dϕ. The volume integral can be written as

∫
f (x, y, z) dx dy dz=

∫
f
(
x(r, θ,ϕ), y(r, θ,ϕ), z(r, θ,ϕ)

)
r2dr sinθ dθ dϕ. �

In summary, we have developed the general formalism for vector analysis in orthogonal
curvilinear coordinates inR3. For most applications, locally orthogonal coordinates can
be chosen for which surface and volume elements in multiple integrals are products of line
elements. For the general nonorthogonal case, Jacobian determinants apply.
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Exercises

2.1.1 Show that limiting our attention to orthogonal coordinate systems implies thatgij = 0
for i 
= j (Eq. (2.7)).
Hint. Construct a triangle with sidesds1, ds2, andds2. Equation (2.9) must hold regard-
less of whethergij = 0. Then compareds2 from Eq. (2.5) with a calculation using the
law of cosines. Show that cosθ12= g12/

√
g11g22.

2.1.2 In the spherical polar coordinate system,q1 = r , q2 = θ , q3 = ϕ. The transformation
equations corresponding to Eq. (2.1) are

x = r sinθ cosϕ, y = r sinθ sinϕ, z= r cosθ.

(a) Calculate the spherical polar coordinate scale factors:hr , hθ , andhϕ .
(b) Check your calculated scale factors by the relationdsi = hi dqi .

2.1.3 Theu-, v-, z-coordinate system frequently used in electrostatics and in hydrodynamics
is defined by

xy = u, x2− y2= v, z= z.

Thisu-, v-, z-system is orthogonal.

(a) In words, describe briefly the nature of each of the three families of coordinate
surfaces.

(b) Sketch the system in thexy-plane showing the intersections of surfaces of constant
u and surfaces of constantv with thexy-plane.

(c) Indicate the directions of the unit vectorû andv̂ in all four quadrants.
(d) Finally, is thisu-, v-, z-system right-handed(û× v̂=+ẑ) or left-handed(û× v̂=

−ẑ)?

2.1.4 The elliptic cylindrical coordinate system consists of three families of surfaces:

1)
x2

a2 cosh2u
+ y2

a2 sinh2u
= 1; 2)

x2

a2 cos2 v
− y2

a2 sin2 v
= 1; 3) z= z.

Sketch the coordinate surfacesu= constant andv = constant as they intersect the first
quadrant of thexy-plane. Show the unit vectorŝu andv̂. The range ofu is 0� u <∞.
The range ofv is 0� v � 2π .

2.1.5 A two-dimensional orthogonal system is described by the coordinatesq1 andq2. Show
that the Jacobian

J

(
x, y

q1, q2

)
≡ ∂(x, y)

∂(q1, q2)
≡ ∂x

∂q1

∂y

∂q2
− ∂x

∂q2

∂y

∂q1
= h1h2

is in agreement with Eq. (2.10).
Hint. It’s easier to work with the square of each side of this equation.
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2.1.6 In Minkowski space we definex1= x, x2= y, x3= z, andx0= ct . This is done so that
the metric interval becomesds2 = dx2

0 –dx2
1 –dx2

2 –dx2
3 (with c = velocity of light).

Show that the metric in Minkowski space is

(gij )=




1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1


 .

We use Minkowski space in Sections 4.5 and 4.6 for describing Lorentz transformations.

2.2 DIFFERENTIAL VECTOR OPERATORS

We return to our restriction to orthogonal coordinate systems.

Gradient

The starting point for developing the gradient, divergence, and curl operators in curvilinear
coordinates is the geometric interpretation of the gradient as the vector having the mag-
nitude and direction of the maximum space rate of change (compare Section 1.6). From
this interpretation the component of∇ψ(q1, q2, q3) in the direction normal to the family
of surfacesq1= constant is given by3

q̂1 ·∇ψ =∇ψ |1=
∂ψ

∂s1
= 1

h1

∂ψ

∂q1
, (2.17)

since this is the rate of change ofψ for varyingq1, holdingq2 andq3 fixed. The quantity
ds1 is a differential length in the direction of increasingq1 (compare Eqs. (2.9)). In Sec-
tion 2.1 we introduced a unit vectorq̂1 to indicate this direction. By repeating Eq. (2.17)
for q2 and again forq3 and adding vectorially, we see that the gradient becomes

∇ψ(q1, q2, q3) = q̂1
∂ψ

∂s1
+ q̂2

∂ψ

∂s2
+ q̂3

∂ψ

∂s3

= q̂1
1

h1

∂ψ

∂q1
+ q̂2

1

h2

∂ψ

∂q2
+ q̂3

1

h3

∂ψ

∂q3

=
∑

i

q̂i

1

hi

∂ψ

∂qi
. (2.18)

Exercise 2.2.4 offers a mathematical alternative independent of this physical interpretation
of the gradient. The total variation of a function,

dψ =∇ψ · dr =
∑

i

1

hi

∂ψ

∂qi
dsi =

∑

i

∂ψ

∂qi
dqi

is consistent with Eq. (2.18), of course.

3Here the use ofϕ to label a function is avoided because it is conventional to use this symbol to denote an azimuthal coordinate.
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Divergence

The divergence operator may be obtained from the second definition (Eq. (1.98)) of Chap-
ter 1 or equivalently from Gauss’ theorem, Section 1.11. Let us use Eq. (1.98),

∇ ·V(q1, q2, q3)= lim∫
dτ→0

∫
V · dσ∫
dτ

, (2.19)

with a differential volumeh1h2h3dq1dq2dq3 (Fig. 2.1). Note that the positive directions
have been chosen so that(q̂1, q̂2, q̂3) form a right-handed set,̂q1× q̂2= q̂3.

The difference of area integrals for the two facesq1= constant is given by
[
V1h2h3+

∂

∂q1
(V1h2h3) dq1

]
dq2dq3− V1h2h3dq2dq3

= ∂

∂q1
(V1h2h3) dq1dq2dq3, (2.20)

exactly as in Sections 1.7 and 1.10.4 Here,Vi = V · q̂i is the projection ofV onto the
q̂i -direction. Adding in the similar results for the other two pairs of surfaces, we obtain

∫
V(q1, q2, q3) · dσ

=
[

∂

∂q1
(V1h2h3)+

∂

∂q2
(V2h3h1)+

∂

∂q3
(V3h1h2)

]
dq1dq2dq3.

FIGURE 2.1 Curvilinear volume element.
4Since we take the limitdq1, dq2, dq3→ 0, the second- and higher-order derivatives will drop out.
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Now, using Eq. (2.19), division by our differential volume yields

∇ ·V(q1, q2, q3)=
1

h1h2h3

[
∂

∂q1
(V1h2h3)+

∂

∂q2
(V2h3h1)+

∂

∂q3
(V3h1h2)

]
. (2.21)

We may obtain the Laplacian by combining Eqs. (2.18) and (2.21), usingV =
∇ψ(q1, q2, q3). This leads to

∇ ·∇ψ(q1, q2, q3)

= 1

h1h2h3

[
∂

∂q1

(
h2h3

h1

∂ψ

∂q1

)
+ ∂

∂q2

(
h3h1

h2

∂ψ

∂q2

)
+ ∂

∂q3

(
h1h2

h3

∂ψ

∂q3

)]
. (2.22)

Curl

Finally, to develop∇ × V, let us apply Stokes’ theorem (Section 1.12) and, as with the
divergence, take the limit as the surface area becomes vanishingly small. Working on one
component at a time, we consider a differential surface element in the curvilinear surface
q1= constant. From

∫

s

∇×V · dσ = q̂1 · (∇×V)h2h3dq2dq3 (2.23)

(mean value theorem of integral calculus), Stokes’ theorem yields

q̂1 · (∇×V)h2h3dq2dq3=
∮

V · dr , (2.24)

with the line integral lying in the surfaceq1= constant. Following the loop (1, 2, 3, 4) of
Fig. 2.2,

∮
V(q1, q2, q3) · dr = V2h2dq2+

[
V3h3+

∂

∂q2
(V3h3) dq2

]
dq3

−
[
V2h2+

∂

∂q3
(V2h2)dq3

]
dq2− V3h3dq3

=
[

∂

∂q2
(h3V3)−

∂

∂q3
(h2V2)

]
dq2dq3. (2.25)

We pick up a positive sign when going in the positive direction on parts 1 and 2 and
a negative sign on parts 3 and 4 because here we are going in the negative direction.
(Higher-order terms in Maclaurin or Taylor expansions have been omitted. They will van-
ish in the limit as the surface becomes vanishingly small (dq2→ 0, dq3→ 0).)

From Eq. (2.24),

∇×V|1=
1

h2h3

[
∂

∂q2
(h3V3)−

∂

∂q3
(h2V2)

]
. (2.26)
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FIGURE 2.2 Curvilinear surface element withq1= constant.

The remaining two components of∇ × V may be picked up by cyclic permutation of the
indices. As in Chapter 1, it is often convenient to write the curl in determinant form:

∇×V = 1

h1h2h3

∣∣∣∣∣∣∣∣∣

q̂1h1 q̂2h2 q̂3h3

∂

∂q1

∂

∂q2

∂

∂q3
h1V1 h2V2 h3V3

∣∣∣∣∣∣∣∣∣
. (2.27)

Remember that, because of the presence of the differential operators, this determinant must
be expanded from the top down. Note that this equation isnot identical with the form for
the cross product of two vectors, Eq. (2.13).∇ is not an ordinary vector; it is a vector
operator.

Our geometric interpretation of the gradient and the use of Gauss’ and Stokes’ theorems
(or integral definitions of divergence and curl) have enabled us to obtain these quantities
without having to differentiate the unit vectors q̂i . There exist alternate ways to deter-
mine grad, div, and curl based on direct differentiation of theq̂i . One approach resolves the
q̂i of a specific coordinate system into its Cartesian components (Exercises 2.4.1 and 2.5.1)
and differentiates this Cartesian form (Exercises 2.4.3 and 2.5.2). The point here is that the
derivatives of the Cartesian̂x, ŷ, and ẑ vanish sincêx, ŷ, and ẑ are constant in direction
as well as in magnitude. A second approach [L. J. Kijewski,Am. J. Phys.33: 816 (1965)]
assumes the equality of∂2r/∂qi ∂qj and∂2r/∂qj ∂qi and develops the derivatives ofq̂i in
a general curvilinear form. Exercises 2.2.3 and 2.2.4 are based on this method.

Exercises

2.2.1 Develop arguments to show that dot and cross products (not involving∇) in orthogonal
curvilinear coordinates inR3 proceed, as in Cartesian coordinates,with no involvement
of scale factors.

2.2.2 With q̂1 a unit vector in the direction of increasingq1, show that
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(a) ∇ · q̂1=
1

h1h2h3

∂(h2h3)

∂q1

(b) ∇× q̂1=
1

h1

[
q̂2

1

h3

∂h1

∂q3
− q̂3

1

h2

∂h1

∂q2

]
.

Note that even thougĥq1 is a unit vector, its divergence and curldo not necessarily
vanish.

2.2.3 Show that the orthogonal unit vectorsq̂j may be defined by

q̂i =
1

hi

∂r
∂qi

. (a)

In particular, show that̂qi · q̂i = 1 leads to an expression forhi in agreement with
Eqs. (2.9).
Equation (a) may be taken as a starting point for deriving

∂q̂i

∂qj
= q̂j

1

hi

∂hj

∂qi
, i 
= j

and

∂q̂i

∂qi
=−

∑

j 
=i
q̂j

1

hj

∂hi

∂qj
.

2.2.4 Derive

∇ψ = q̂1
1

h1

∂ψ

∂q1
+ q̂2

1

h2

∂ψ

∂q2
+ q̂3

1

h3

∂ψ

∂q3

by direct application of Eq. (1.97),

∇ψ = lim∫
dτ→0

∫
ψ dσ∫
dτ

.

Hint. Evaluation of the surface integral will lead to terms like(h1h2h3)
−1(∂/∂q1) ×

(q̂1h2h3). The results listed in Exercise 2.2.3 will be helpful. Cancellation of unwanted
terms occurs when the contributions of all three pairs of surfaces are added together.

2.3 SPECIAL COORDINATE SYSTEMS: INTRODUCTION

There are at least 11 coordinate systems in which the three-dimensional Helmholtz equa-
tion can be separated into three ordinary differential equations. Some of these coordinate
systems have achieved prominence in the historical development of quantum mechanics.
Other systems, such as bipolar coordinates, satisfy special needs. Partly because the needs
are rather infrequent but mostly because the development of computers and efficient pro-
gramming techniques reduce the need for these coordinate systems, the discussion in this
chapter is limited to (1) Cartesian coordinates, (2) spherical polar coordinates, and (3) cir-
cular cylindrical coordinates. Specifications and details of the other coordinate systems
will be found in the first two editions of this work and in Additional Readings at the end of
this chapter (Morse and Feshbach, Margenau and Murphy).
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2.4 CIRCULAR CYLINDER COORDINATES

In the circular cylindrical coordinate system the three curvilinear coordinates(q1, q2, q3)

are relabeled(ρ,ϕ, z). We are usingρ for the perpendicular distance from thez-axis and
savingr for the distance from the origin. The limits onρ, ϕ andz are

0� ρ <∞, 0� ϕ � 2π, and −∞< z <∞.

Forρ = 0, ϕ is not well defined. The coordinate surfaces, shown in Fig. 2.3, are:

1. Right circular cylinders having thez-axis as a common axis,

ρ =
(
x2+ y2)1/2= constant.

2. Half-planes through thez-axis,

ϕ = tan−1
(
y

x

)
= constant.

3. Planes parallel to thexy-plane, as in the Cartesian system,

z= constant.

FIGURE 2.3 Circular cylinder coordinates.
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FIGURE 2.4 Circular cylindrical
coordinate unit vectors.

Inverting the preceding equations forρ andϕ (or going directly to Fig. 2.3), we obtain
the transformation relations

x = ρ cosϕ, y = ρ sinϕ, z= z. (2.28)

The z-axis remains unchanged. This is essentially a two-dimensional curvilinear system
with a Cartesianz-axis added on to form a three-dimensional system.

According to Eq. (2.5) or from the length elementsdsi , the scale factors are

h1= hρ = 1, h2= hϕ = ρ, h3= hz = 1. (2.29)

The unit vectorŝq1, q̂2, q̂3 are relabeled(ρ̂, ϕ̂, ẑ), as in Fig. 2.4. The unit vector̂ρ is normal
to the cylindrical surface, pointing in the direction of increasing radiusρ. The unit vector
ϕ̂ is tangential to the cylindrical surface, perpendicular to the half planeϕ = constant and
pointing in the direction of increasing azimuth angleϕ. The third unit vector,̂z, is the usual
Cartesian unit vector. They are mutually orthogonal,

ρ̂ · ϕ̂ = ϕ̂ · ẑ= ẑ · ρ̂ = 0,

and the coordinate vector and a general vectorV are expressed as

r = ρ̂ρ + ẑz, V = ρ̂Vρ + ϕ̂Vϕ + ẑVz.

A differential displacementdr may be written

dr = ρ̂ dsρ + ϕ̂ dsϕ + ẑdz

= ρ̂ dρ + ϕ̂ρ dϕ + ẑdz. (2.30)

Example 2.4.1 AREA LAW FOR PLANETARY MOTION

First we derive Kepler’s law in cylindrical coordinates, saying that the radius vector sweeps
out equal areas in equal time, from angular momentum conservation.



2.4 Circular Cylinder Coordinates 117

We consider the sun at the origin as a source of thecentral gravitational forceF= f (r)r̂ .
Then the orbital angular momentumL =mr × v of a planet of massm and velocityv is
conserved, because the torque

dL
dt
=m

dr
dt
× dr

dt
+ r ×m

dv
dt
= r × F= f (r)

r
r × r = 0.

HenceL = const. Now we can choose thez-axis to lie along the direction of the orbital
angular momentum vector,L = Lẑ, and work in cylindrical coordinatesr = (ρ,ϕ, z)= ρρ̂

with z= 0. The planet moves in thexy-plane becauser andv are perpendicular toL . Thus,
we expand its velocity as follows:

v= dr
dt
= ρ̇ρ̂ + ρ

dρ̂

dt
.

From

ρ̂ = (cosϕ,sinϕ),
∂ρ̂

dϕ
= (−sinϕ,cosϕ)= ϕ̂,

we find thatdρ̂
dt
= dρ̂

dϕ
dϕ
dt
= ϕ̇ϕ̂ using the chain rule, sov= ρ̇ρ̂ + ρ

dρ̂
dt
= ρ̇ρ̂ + ρϕ̇ϕ̂. When

we substitute the expansions ofρ̂ andv in polar coordinates, we obtain

L =mρ × v=mρ(ρϕ̇)(ρ̂ × ϕ̂)=mρ2ϕ̇ẑ= constant.

The triangular area swept by the radius vectorρ in the timedt (area law), when inte-
grated over one revolution, is given by

A= 1

2

∫
ρ(ρ dϕ)= 1

2

∫
ρ2ϕ̇ dt = L

2m

∫
dt = Lτ

2m
, (2.31)

if we substitutemρ2ϕ̇ = L= const. Hereτ is the period, that is, the time for one revolution
of the planet in its orbit.

Kepler’s first law says that the orbit is an ellipse. Now we derive the orbit equation
ρ(ϕ) of the ellipse in polar coordinates, where in Fig. 2.5 the sun is at one focus, which is
the origin of our cylindrical coordinates. From the geometrical construction of the ellipse
we know thatρ′ + ρ = 2a, wherea is the major half-axis; we shall show that this is
equivalent to the conventional form of the ellipse equation. The distance between both foci
is 0< 2aǫ < 2a, where 0< ǫ < 1 is called the eccentricity of the ellipse. For a circleǫ = 0
because both foci coincide with the center. There is an angle, as shown in Fig. 2.5, where
the distancesρ′ = ρ = a are equal, and Pythagoras’ theorem applied to this right triangle

FIGURE 2.5 Ellipse in polar coordinates.
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givesb2+ a2ǫ2= a2. As a result,
√

1− ǫ2= b/a is the ratio of the minor half-axis (b) to
the major half-axis,a.

Now consider the triangle with the sides labeled byρ′, ρ, 2aǫ in Fig. 2.5 and angle
oppositeρ′ equal toπ − ϕ. Then, applying the law of cosines, gives

ρ′2= ρ2+ 4a2ǫ2+ 4ρaǫ cosϕ.

Now substitutingρ′ = 2a − ρ, cancelingρ2 on both sides and dividing by 4a yields

ρ(1+ ǫ cosϕ)= a
(
1− ǫ2)≡ p, (2.32)

theKepler orbit equation in polar coordinates.
Alternatively, we revert to Cartesian coordinates to find, from Eq. (2.32) withx =

ρ cosϕ, that

ρ2= x2+ y2= (p− xǫ)2= p2+ x2ǫ2− 2pxǫ,

so the familiar ellipse equation in Cartesian coordinates,

(
1− ǫ2)

(
x + pǫ

1− ǫ2

)2

+ y2= p2+ p2ǫ2

1− ǫ2
= p2

1− ǫ2
,

obtains. If we compare this result with the standard form of the ellipse,

(x − x0)
2

a2
+ y2

b2
= 1,

we confirm that

b= p√
1− ǫ2

= a
√

1− ǫ2, a = p

1− ǫ2
,

and that the distancex0 between the center and focus isaǫ, as shown in Fig. 2.5. �

The differential operations involving∇ follow from Eqs. (2.18), (2.21), (2.22), and
(2.27):

∇ψ(ρ,ϕ, z) = ρ̂
∂ψ

∂ρ
+ ϕ̂

1

ρ

∂ψ

∂ϕ
+ ẑ

∂ψ

∂z
, (2.33)

∇ ·V = 1

ρ

∂

∂ρ
(ρVρ)+

1

ρ

∂Vϕ

∂ϕ
+ ∂Vz

∂z
, (2.34)

∇2ψ = 1

ρ

∂

∂ρ

(
ρ
∂ψ

∂ρ

)
+ 1

ρ2

∂2ψ

∂ϕ2
+ ∂2ψ

∂z2
, (2.35)

∇×V = 1

ρ

∣∣∣∣∣∣∣∣∣

ρ̂ ρϕ̂ ẑ

∂

∂ρ

∂

∂ϕ

∂

∂z
Vρ ρVϕ Vz

∣∣∣∣∣∣∣∣∣
. (2.36)
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Finally, for problems such as circular wave guides and cylindrical cavity resonators the
vector Laplacian∇2V resolved in circular cylindrical coordinates is

∇2V|ρ = ∇2Vρ −
1

ρ2
Vρ −

2

ρ2

∂Vϕ

∂ϕ
,

∇2V|ϕ = ∇2Vϕ −
1

ρ2
Vϕ +

2

ρ2

∂Vρ

∂ϕ
, (2.37)

∇2V|z = ∇2Vz,

which follow from Eq. (1.85). The basic reason for this particular form of thez-component
is that thez-axis is a Cartesian axis; that is,

∇2(ρ̂Vρ + ϕ̂Vϕ + ẑVz) = ∇2(ρ̂Vρ + ϕ̂Vϕ)+ ẑ∇2Vz

= ρ̂f (Vρ,Vϕ)+ ϕ̂g(Vρ,Vϕ)+ ẑ∇2Vz.

Finally, the operator∇2 operating on thêρ, ϕ̂ unit vectors stays in thêρϕ̂-plane.

Example 2.4.2 A NAVIER–STOKES TERM

The Navier–Stokes equations of hydrodynamics contain a nonlinear term

∇×
[
v× (∇× v)

]
,

wherev is the fluid velocity. For fluid flowing through a cylindrical pipe in thez-direction,

v= ẑv(ρ).

From Eq. (2.36),

∇× v = 1

ρ

∣∣∣∣∣∣∣∣∣

ρ̂ ρϕ̂ ẑ

∂

∂ρ

∂

∂ϕ

∂

∂z
0 0 v(ρ)

∣∣∣∣∣∣∣∣∣
=−ϕ̂

∂v

∂ρ

v× (∇× v) =

∣∣∣∣∣∣∣∣

ρ̂ ϕ̂ ẑ
0 0 v

0 −∂v

∂ρ
0

∣∣∣∣∣∣∣∣
= ρ̂v(ρ)

∂v

∂ρ
.

Finally,

∇×
(
v× (∇× v)

)
= 1

ρ

∣∣∣∣∣∣∣∣∣∣

ρ̂ ρϕ̂ ẑ

∂

∂ρ

∂

∂ϕ

∂

∂z

v
∂v

∂ρ
0 0

∣∣∣∣∣∣∣∣∣∣

= 0,

so, for this particular case, the nonlinear term vanishes. �
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Exercises

2.4.1 Resolve the circular cylindrical unit vectors into their Cartesian components (Fig. 2.6).

ANS. ρ̂ = x̂ cosϕ + ŷ sinϕ,
ϕ̂ = −x̂ sinϕ + ŷ cosϕ,
ẑ= ẑ.

2.4.2 Resolve the Cartesian unit vectors into their circular cylindrical components (Fig. 2.6).

ANS. x̂ = ρ̂ cosϕ − ϕ̂ sinϕ,
ŷ = ρ̂ sinϕ + ϕ̂ cosϕ,
ẑ= ẑ.

2.4.3 From the results of Exercise 2.4.1 show that

∂ρ̂

∂ϕ
= ϕ̂,

∂ϕ̂

∂ϕ
=−ρ̂

and that all other first derivatives of the circular cylindrical unit vectors with respect to
the circular cylindrical coordinates vanish.

2.4.4 Compare∇ ·V (Eq. (2.34)) with the gradient operator

∇ = ρ̂
∂

∂ρ
+ ϕ̂

1

ρ

∂

∂ϕ
+ ẑ

∂

∂z

(Eq. (2.33)) dotted intoV. Note that the differential operators of∇ differentiateboth
the unit vectors and the components ofV.
Hint. ϕ̂(1/ρ)(∂/∂ϕ) · ρ̂Vρ becomeŝϕ · 1

ρ
∂
∂ϕ

(ρ̂Vρ) and doesnot vanish.

2.4.5 (a) Show thatr = ρ̂ρ + ẑz.

FIGURE 2.6 Plane polar coordinates.
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(b) Working entirely in circular cylindrical coordinates, show that

∇ · r = 3 and ∇× r = 0.

2.4.6 (a) Show that the parity operation (reflection through the origin) on a point(ρ,ϕ, z)

relative tofixed x-, y-, z-axes consists of the transformation

ρ→ ρ, ϕ→ ϕ ± π, z→−z.
(b) Show thatρ̂ and ϕ̂ have odd parity (reversal of direction) and thatẑ has even

parity.
Note.The Cartesian unit vectorŝx, ŷ, andẑ remain constant.

2.4.7 A rigid body is rotating about a fixed axis with a constant angular velocityω. Takeω to
lie along thez-axis. Express the position vectorr in circular cylindrical coordinates and
using circular cylindrical coordinates,
(a) calculatev= ω× r , (b) calculate∇× v.

ANS. (a) v= ϕ̂ωρ,

(b) ∇× v= 2ω.

2.4.8 Find the circular cylindrical components of the velocity and acceleration of a moving
particle,

vρ = ρ̇, aρ = ρ̈ − ρϕ̇2,

vϕ = ρϕ̇, aϕ = ρϕ̈ + 2ρ̇ϕ̇,
vz = ż, az = z̈.

Hint.

r(t) = ρ̂(t)ρ(t)+ ẑz(t)

=
[
x̂ cosϕ(t)+ ŷsinϕ(t)

]
ρ(t)+ ẑz(t).

Note.ρ̇ = dρ/dt , ρ̈ = d2ρ/dt2, and so on.

2.4.9 Solve Laplace’s equation,∇2ψ = 0, in cylindrical coordinates forψ =ψ(ρ).

ANS.ψ = k ln
ρ

ρ0
.

2.4.10 In right circular cylindrical coordinates a particular vector function is given by

V(ρ,ϕ)= ρ̂Vρ(ρ,ϕ)+ ϕ̂Vϕ(ρ,ϕ).

Show that∇×V has only az-component. Note that this result will hold for any vector
confined to a surfaceq3 = constant as long as the productsh1V1 andh2V2 are each
independent ofq3.

2.4.11 For the flow of an incompressible viscous fluid the Navier–Stokes equations lead to

−∇×
(
v× (∇× v)

)
= η

ρ0
∇2(∇× v).

Hereη is the viscosity andρ0 is the density of the fluid. For axial flow in a cylindrical
pipe we take the velocityv to be

v= ẑv(ρ).
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From Example 2.4.2,

∇×
(
v× (∇× v)

)
= 0

for this choice ofv.
Show that

∇2(∇× v)= 0

leads to the differential equation

1

ρ

d

dρ

(
ρ
d2v

dρ2

)
− 1

ρ2

dv

dρ
= 0

and that this is satisfied by

v = v0+ a2ρ
2.

2.4.12 A conducting wire along thez-axis carries a currentI . The resulting magnetic vector
potential is given by

A = ẑ
µI

2π
ln

(
1

ρ

)
.

Show that the magnetic inductionB is given by

B= ϕ̂
µI

2πρ
.

2.4.13 A force is described by

F=−x̂
y

x2+ y2
+ ŷ

x

x2+ y2
.

(a) ExpressF in circular cylindrical coordinates.

Operating entirely in circular cylindrical coordinates for (b) and (c),

(b) calculate the curl ofF and
(c) calculate the work done byF in travers the unit circle once counterclockwise.
(d) How do you reconcile the results of (b) and (c)?

2.4.14 A transverse electromagnetic wave (TEM) in a coaxial waveguide has an electric field
E= E(ρ,ϕ)ei(kz−ωt) and a magnetic induction field ofB= B(ρ,ϕ)ei(kz−ωt). Since the
wave is transverse, neitherE norB has az component. The two fields satisfy thevector
Laplacian equation

∇2E(ρ,ϕ) = 0

∇2B(ρ,ϕ) = 0.

(a) Show thatE= ρ̂E0(a/ρ)e
i(kz−ωt) andB= ϕ̂B0(a/ρ)e

i(kz−ωt) are solutions. Here
a is the radius of the inner conductor andE0 andB0 are constant amplitudes.
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(b) Assuming a vacuum inside the waveguide, verify that Maxwell’s equations are
satisfied with

B0/E0= k/ω= µ0ε0(ω/k)= 1/c.

2.4.15 A calculation of the magnetohydrodynamic pinch effect involves the evaluation of
(B ·∇)B. If the magnetic inductionB is taken to beB= ϕ̂Bϕ(ρ), show that

(B ·∇)B=−ρ̂B2
ϕ/ρ.

2.4.16 The linear velocity of particles in a rigid body rotating with angular velocityω is given
by

v= ϕ̂ρω.

Integrate
∮

v · dλ around a circle in thexy-plane and verify that
∮

v · dλ

area
=∇× v|z.

2.4.17 A proton of massm, charge+e, and (asymptotic) momentump = mv is incident on
a nucleus of charge+Ze at an impact parameterb. Determine the proton’s distance of
closest approach.

2.5 SPHERICAL POLAR COORDINATES

Relabeling(q1, q2, q3) as(r, θ,ϕ), we see that the spherical polar coordinate system con-
sists of the following:

1. Concentric spheres centered at the origin,

r =
(
x2+ y2+ z2)1/2= constant.

2. Right circular cones centered on thez-(polar) axis, vertices at the origin,

θ = arccos
z

(x2+ y2+ z2)1/2
= constant.

3. Half-planes through thez-(polar) axis,

ϕ = arctan
y

x
= constant.

By our arbitrary choice of definitions ofθ , the polar angle, andϕ, the azimuth angle, the
z-axis is singled out for special treatment. The transformation equations corresponding to
Eq. (2.1) are

x = r sinθ cosϕ, y = r sinθ sinϕ, z= r cosθ, (2.38)



124 Chapter 2 Vector Analysis in Curved Coordinates and Tensors

FIGURE 2.7 Spherical polar coordinate area
elements.

measuringθ from the positivez-axis andϕ in thexy-plane from the positivex-axis. The
ranges of values are 0� r <∞, 0 � θ � π , and 0� ϕ � 2π . At r = 0, θ andϕ are
undefined. From differentiation of Eq. (2.38),

h1 = hr = 1,

h2 = hθ = r, (2.39)

h3 = hϕ = r sinθ.

This gives a line element

dr = r̂ dr + θ̂r dθ + ϕ̂r sinθ dϕ,

so

ds2= dr · dr = dr2+ r2dθ2+ r2 sin2 θ dϕ2,

the coordinates being obviously orthogonal. In this spherical coordinate system the area
element (forr = constant) is

dA= dσθϕ = r2 sinθ dθ dϕ, (2.40)

the light, unshaded area in Fig. 2.7. Integrating over the azimuthϕ, we find that the area
element becomes a ring of widthdθ ,

dAθ = 2πr2 sinθ dθ. (2.41)

This form will appear repeatedly in problems in spherical polar coordinates with azimuthal
symmetry, such as the scattering of an unpolarized beam of particles. By definition of solid
radians, or steradians, an element of solid angled� is given by

d�= dA

r2
= sinθ dθ dϕ. (2.42)
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FIGURE 2.8 Spherical polar coordinates.

Integrating over the entire spherical surface, we obtain
∫

d�= 4π.

From Eq. (2.11) the volume element is

dτ = r2dr sinθ dθ dϕ = r2dr d�. (2.43)

The spherical polar coordinate unit vectors are shown in Fig. 2.8.
It must be emphasized thatthe unit vectors r̂, θ̂ , and ϕ̂ vary in direction as the angles

θ and ϕ vary. Specifically, theθ andϕ derivatives of these spherical polar coordinate unit
vectors do not vanish (Exercise 2.5.2). When differentiating vectors in spherical polar (or
in any non-Cartesian system), this variation of the unit vectors with position must not be
neglected. In terms of the fixed-direction Cartesian unit vectorsx̂, ŷ andẑ (cp. Eq. (2.38)),

r̂ = x̂ sinθ cosϕ + ŷ sinθ sinϕ + ẑcosθ,

θ̂ = x̂ cosθ cosϕ + ŷcosθ sinϕ − ẑsinθ = ∂ r̂
∂θ

, (2.44)

ϕ̂ = −x̂ sinϕ + ŷ cosϕ = 1

sinθ

∂ r̂
∂ϕ

,

which follow from

0= ∂ r̂2

∂θ
= 2r̂ · ∂ r̂

∂θ
, 0= ∂ r̂2

∂ϕ
= 2r̂ · ∂ r̂

∂ϕ
.
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Note that Exercise 2.5.5 gives the inverse transformation and that a given vector can
now be expressed in a number of different (but equivalent) ways. For instance, the position
vectorr may be written

r = r̂r = r̂
(
x2+ y2+ z2)1/2

= x̂x + ŷy + ẑz

= x̂r sinθ cosϕ + ŷr sinθ sinϕ + ẑr cosθ. (2.45)

Select the form that is most useful for your particular problem.
From Section 2.2, relabeling the curvilinear coordinate unit vectorsq̂1, q̂2, andq̂3 asr̂ ,

θ̂ , andϕ̂ gives

∇ψ = r̂
∂ψ

∂r
+ θ̂

1

r

∂ψ

∂θ
+ ϕ̂

1

r sinθ

∂ψ

∂ϕ
, (2.46)

∇ ·V = 1

r2 sinθ

[
sinθ

∂

∂r
(r2Vr)+ r

∂

∂θ
(sinθVθ )+ r

∂Vϕ

∂ϕ

]
, (2.47)

∇ ·∇ψ = 1

r2 sinθ

[
sinθ

∂

∂r

(
r2∂ψ

∂r

)
+ ∂

∂θ

(
sinθ

∂ψ

∂θ

)
+ 1

sinθ

∂2ψ

∂ϕ2

]
, (2.48)

∇×V = 1

r2 sinθ

∣∣∣∣∣∣∣∣∣

r̂ r θ̂ r sinθ ϕ̂

∂

∂r

∂

∂θ

∂

∂ϕ
Vr rVθ r sinθVϕ

∣∣∣∣∣∣∣∣∣
. (2.49)

Occasionally, the vector Laplacian∇2V is needed in spherical polar coordinates. It is
best obtained by using the vector identity (Eq. (1.85)) of Chapter 1. For reference

∇2V|r =
(
− 2

r2
+ 2

r

∂

∂r
+ ∂2

∂r2
+ cosθ

r2 sinθ

∂

∂θ
+ 1

r2

∂2

∂θ2
+ 1

r2 sin2 θ

∂2

∂ϕ2

)
Vr

+
(
− 2

r2

∂

∂θ
− 2 cosθ

r2 sinθ

)
Vθ +

(
− 2

r2 sinθ

∂

∂ϕ

)
Vϕ

= ∇2Vr −
2

r2
Vr −

2

r2

∂Vθ

∂θ
− 2 cosθ

r2 sinθ
Vθ −

2

r2 sinθ

∂Vϕ

∂ϕ
, (2.50)

∇2V|θ = ∇2Vθ −
1

r2 sin2 θ
Vθ +

2

r2

∂Vr

∂θ
− 2 cosθ

r2 sin2 θ

∂Vϕ

∂ϕ
, (2.51)

∇2V|ϕ = ∇2Vϕ −
1

r2 sin2 θ
Vϕ +

2

r2 sinθ

∂Vr

∂ϕ
+ 2 cosθ

r2 sin2 θ

∂Vθ

∂ϕ
. (2.52)

These expressions for the components of∇2V are undeniably messy, but sometimes they
are needed.
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Example 2.5.1 ∇, ∇ · , ∇× FOR A CENTRAL FORCE

Using Eqs. (2.46) to (2.49), we can reproduce by inspection some of the results derived in
Chapter 1 by laborious application of Cartesian coordinates.

From Eq. (2.46),

∇f (r) = r̂
df

dr
,

∇rn = r̂nrn−1.

(2.53)

For the Coulomb potentialV = Ze/(4πε0r), the electric field isE=−∇V = Ze

4πε0r
2 r̂ .

From Eq. (2.47),

∇ · r̂f (r) = 2

r
f (r)+ df

dr
,

∇ · r̂rn = (n+ 2)rn−1.

(2.54)

For r > 0 the charge density of the electric field of the Coulomb potential isρ =∇ · E=
Ze

4πε0
∇ · r̂

r2 = 0 becausen=−2.
From Eq. (2.48),

∇2f (r) = 2

r

df

dr
+ d2f

dr2
, (2.55)

∇2rn = n(n+ 1)rn−2, (2.56)

in contrast to the ordinary radial second derivative ofrn involving n− 1 instead ofn+ 1.
Finally, from Eq. (2.49),

∇× r̂f (r)= 0. (2.57)

�

Example 2.5.2 MAGNETIC VECTOR POTENTIAL

The computation of the magnetic vector potential of a single current loop in thexy-plane
uses Oersted’s law,∇×H = J, in conjunction withµ0H = B=∇×A (see Examples 1.9.2
and 1.12.1), and involves the evaluation of

µ0J=∇×
[
∇× ϕ̂Aϕ(r, θ)

]
.

In spherical polar coordinates this reduces to

µ0J = ∇× 1

r2 sinθ

∣∣∣∣∣∣∣∣∣

r̂ r θ̂ r sinθ ϕ̂

∂

∂r

∂

∂θ

∂

∂ϕ
0 0 r sinθAϕ(r, θ)

∣∣∣∣∣∣∣∣∣

= ∇× 1

r2 sinθ

[
r̂
∂

∂θ
(r sinθAϕ)− r θ̂

∂

∂r
(r sinθAϕ)

]
.
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Taking the curl a second time, we obtain

µ0J= 1

r2 sinθ

∣∣∣∣∣∣∣∣∣∣

r̂ r θ̂ r sinθ ϕ̂

∂

∂r

∂

∂θ

∂

∂ϕ
1

r2 sinθ

∂

∂θ
(r sinθAϕ) − 1

r sinθ

∂

∂r
(r sinθAϕ) 0

∣∣∣∣∣∣∣∣∣∣

.

By expanding the determinant along the top row, we have

µ0J = −ϕ̂

{
1

r

∂2

∂r2
(rAϕ)+

1

r2

∂

∂θ

[
1

sinθ

∂

∂θ
(sinθAϕ)

]}

= −ϕ̂

[
∇2Aϕ(r, θ)−

1

r2 sin2 θ
Aϕ(r, θ)

]
. (2.58)

�

Exercises

2.5.1 Express the spherical polar unit vectors in Cartesian unit vectors.

ANS. r̂ = x̂ sinθ cosϕ + ŷ sinθ sinϕ + ẑcosθ,
θ̂ = x̂ cosθ cosϕ + ŷ cosθ sinϕ − ẑsinθ,
ϕ̂ = −x̂sinϕ + ŷcosϕ.

2.5.2 (a) From the results of Exercise 2.5.1, calculate the partial derivatives ofr̂ , θ̂ , andϕ̂

with respect tor , θ , andϕ.
(b) With ∇ given by

r̂
∂

∂r
+ θ̂

1

r

∂

∂θ
+ ϕ̂

1

r sinθ

∂

∂ϕ

(greatest space rate of change), use the results of part (a) to calculate∇ ·∇ψ . This
is an alternate derivation of the Laplacian.

Note.The derivatives of the left-hand∇ operate on the unit vectors of the right-hand∇

before the unit vectors are dotted together.

2.5.3 A rigid body is rotating about a fixed axis with a constant angular velocityω. Takeω to
be along thez-axis. Using spherical polar coordinates,

(a) Calculate

v= ω× r .

(b) Calculate

∇× v.

ANS. (a) v= ϕ̂ωr sinθ,
(b) ∇× v= 2ω.
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2.5.4 The coordinate system(x, y, z) is rotated through an angle� counterclockwise about an
axis defined by the unit vectorn into system(x′, y′, z′). In terms of the new coordinates
the radius vector becomes

r ′ = r cos�+ r × n sin�+ n(n · r)(1− cos�).

(a) Derive this expression from geometric considerations.
(b) Show that it reduces as expected forn= ẑ. The answer, in matrix form, appears in

Eq. (3.90).
(c) Verify thatr ′2= r2.

2.5.5 Resolve the Cartesian unit vectors into their spherical polar components:

x̂ = r̂ sinθ cosϕ + θ̂ cosθ cosϕ − ϕ̂ sinϕ,

ŷ = r̂ sinθ sinϕ + θ̂ cosθ sinϕ + ϕ̂ cosϕ,

ẑ= r̂ cosθ − θ̂ sinθ.

2.5.6 The direction of one vector is given by the anglesθ1 andϕ1. For a second vector the
corresponding angles areθ2 andϕ2. Show that the cosine of the included angleγ is
given by

cosγ = cosθ1 cosθ2+ sinθ1 sinθ2 cos(ϕ1− ϕ2).

See Fig. 12.15.

2.5.7 A certain vectorV has no radial component. Its curl has no tangential components.
What does this imply about the radial dependence of the tangential components ofV?

2.5.8 Modern physics lays great stress on the property of parity — whether a quantity remains
invariant or changes sign under an inversion of the coordinate system. In Cartesian
coordinates this meansx→−x, y→−y, andz→−z.

(a) Show that the inversion (reflection through the origin) of a point(r, θ,ϕ) relative
to fixed x-, y-, z-axes consists of the transformation

r→ r, θ→ π − θ, ϕ→ ϕ ± π.

(b) Show that̂r andϕ̂ have odd parity (reversal of direction) and thatθ̂ has even parity.

2.5.9 With A any vector,

A ·∇r = A.

(a) Verify this result in Cartesian coordinates.
(b) Verify this result using spherical polar coordinates. (Equation (2.46) provides∇.)
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2.5.10 Find the spherical coordinate components of the velocity and acceleration of a moving
particle:

vr = ṙ ,

vθ = rθ̇ ,

vϕ = r sinθϕ̇,

ar = r̈ − rθ̇2− r sin2 θϕ̇2,

aθ = rθ̈ + 2ṙ θ̇ − r sinθ cosθϕ̇2,

aϕ = r sinθϕ̈ + 2ṙ sinθϕ̇ + 2r cosθ θ̇ ϕ̇.

Hint.

r(t) = r̂(t)r(t)

=
[
x̂ sinθ(t)cosϕ(t)+ ŷsinθ(t)sinϕ(t)+ ẑcosθ(t)

]
r(t).

Note.Using the Lagrangian techniques of Section 17.3, we may obtain these results
somewhat more elegantly. The dot inṙ , θ̇ , ϕ̇ means time derivative,̇r = dr/dt, θ̇ =
dθ/dt, ϕ̇ = dϕ/dt . The notation was originated by Newton.

2.5.11 A particlem moves in response to a central force according to Newton’s second law,

mr̈ = r̂f (r).

Show thatr × ṙ = c, a constant, and that the geometric interpretation of this leads to
Kepler’s second law.

2.5.12 Express∂/∂x, ∂/∂y, ∂/∂z in spherical polar coordinates.

ANS.
∂

∂x
= sinθ cosϕ

∂

∂r
+ cosθ cosϕ

1

r

∂

∂θ
− sinϕ

r sinθ

∂

∂ϕ
,

∂

∂y
= sinθ sinϕ

∂

∂r
+ cosθ sinϕ

1

r

∂

∂θ
+ cosϕ

r sinθ

∂

∂ϕ
,

∂

∂z
= cosθ

∂

∂r
− sinθ

1

r

∂

∂θ
.

Hint. Equate∇xyz and∇rθϕ .

2.5.13 From Exercise 2.5.12 show that

−i
(
x
∂

∂y
− y

∂

∂x

)
=−i ∂

∂ϕ
.

This is the quantum mechanical operator corresponding to thez-component of orbital
angular momentum.

2.5.14 With the quantum mechanical orbital angular momentum operator defined asL =
−i(r ×∇), show that

(a) Lx + iLy = eiϕ
(

∂

∂θ
+ i cotθ

∂

∂ϕ

)
,
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(b) Lx − iLy =−e−iϕ
(

∂

∂θ
− i cotθ

∂

∂ϕ

)
.

(These are the raising and lowering operators of Section 4.3.)

2.5.15 Verify that L × L = iL in spherical polar coordinates.L = −i(r × ∇), the quantum
mechanical orbital angular momentum operator.
Hint. Use spherical polar coordinates forL but Cartesian components for the cross
product.

2.5.16 (a) From Eq. (2.46) show that

L =−i(r ×∇)= i

(
θ̂

1

sinθ

∂

∂ϕ
− ϕ̂

∂

∂θ

)
.

(b) Resolvingθ̂ andϕ̂ into Cartesian components, determineLx , Ly , andLz in terms
of θ , ϕ, and their derivatives.

(c) FromL2= L2
x +L2

y +L2
z show that

L2 = − 1

sinθ

∂

∂θ

(
sinθ

∂

∂θ

)
− 1

sin2 θ

∂2

∂ϕ2

= −r2∇2+ ∂

∂r

(
r2 ∂

∂r

)
.

This latter identity is useful in relating orbital angular momentum and Legendre’s dif-
ferential equation, Exercise 9.3.8.

2.5.17 With L =−ir ×∇, verify the operator identities

(a) ∇ = r̂
∂

∂r
− i

r × L
r2

,

(b) r∇2−∇

(
1+ r

∂

∂r

)
= i∇× L .

2.5.18 Show that the following three forms (spherical coordinates) of∇2ψ(r) are equivalent:

(a)
1

r2

d

dr

[
r2dψ(r)

dr

]
; (b)

1

r

d2

dr2

[
rψ(r)

]
; (c)

d2ψ(r)

dr2
+ 2

r

dψ(r)

dr
.

The second form is particularly convenient in establishing a correspondence between
spherical polar and Cartesian descriptions of a problem.

2.5.19 One model of the solar corona assumes that the steady-state equation of heat flow,

∇ · (k∇T )= 0,

is satisfied. Here,k, the thermal conductivity, is proportional toT 5/2. Assuming that
the temperatureT is proportional torn, show that the heat flow equation is satisfied by
T = T0(r0/r)

2/7.
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2.5.20 A certain force field is given by

F= r̂
2P cosθ

r3
+ θ̂

P

r3
sinθ, r � P/2

(in spherical polar coordinates).

(a) Examine∇× F to see if a potential exists.
(b) Calculate

∮
F · dλ for a unit circle in the planeθ = π/2. What does this indicate

about the force being conservative or nonconservative?
(c) If you believe thatF may be described byF = −∇ψ , find ψ . Otherwise simply

state that no acceptable potential exists.

2.5.21 (a) Show thatA =−ϕ̂ cotθ/r is a solution of∇×A = r̂/r2.
(b) Show that this spherical polar coordinate solution agrees with the solution given

for Exercise 1.13.6:

A = x̂
yz

r(x2+ y2)
− ŷ

xz

r(x2+ y2)
.

Note that the solution diverges forθ = 0,π corresponding tox, y = 0.
(c) Finally, show thatA =−θ̂ϕ sinθ/r is a solution. Note that although this solution

does not diverge(r 
= 0), it is no longer single-valued for all possible azimuth
angles.

2.5.22 A magnetic vector potential is given by

A = µ0

4π

m× r
r3

.

Show that this leads to the magnetic inductionB of a point magnetic dipole with dipole
momentm.

ANS. for m = ẑm,

∇×A = r̂
µ0

4π

2mcosθ

r3
+ θ̂

µ0

4π

msinθ

r3
.

Compare Eqs. (12.133) and (12.134)

2.5.23 At large distances from its source, electric dipole radiation has fields

E= aE sinθ
ei(kr−ωt)

r
θ̂ , B= aB sinθ

ei(kr−ωt)

r
ϕ̂.

Show that Maxwell’s equations

∇×E=−∂B
∂t

and ∇×B= ε0µ0
∂E
∂t

are satisfied, if we take

aE

aB
= ω

k
= c= (ε0µ0)

−1/2.

Hint. Sincer is large, terms of orderr−2 may be dropped.
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2.5.24 The magnetic vector potential for a uniformly charged rotating spherical shell is

A =





ϕ̂
µ0a

4σω

3
· sinθ

r2
, r > a

ϕ̂
µ0aσω

3
· r cosθ, r < a.

(a = radius of spherical shell,σ = surface charge density, andω = angular velocity.)
Find the magnetic inductionB=∇×A.

ANS. Br(r, θ) =
2µ0a

4σω

3
· cosθ

r3
, r > a,

Bθ (r, θ) =
µ0a

4σω

3
· sinθ

r3
, r > a,

B = ẑ
2µ0aσω

3
, r < a.

2.5.25 (a) Explain why∇2 in plane polar coordinates follows from∇2 in circular cylindrical
coordinates withz= constant.

(b) Explain why taking∇2 in spherical polar coordinates and restrictingθ toπ/2 does
not lead to the plane polar form of∇.

Note.

∇2(ρ,ϕ)= ∂2

∂ρ2
+ 1

ρ

∂

∂ρ
+ 1

ρ2

∂2

∂ϕ2
.

2.6 TENSOR ANALYSIS

Introduction, Definitions

Tensors are important in many areas of physics, including general relativity and electrody-
namics. Scalars and vectors are special cases of tensors. In Chapter 1, a quantity that did not
change under rotations of the coordinate system in three-dimensional space, an invariant,
was labeled a scalar. Ascalar is specified by one real number and is atensor of rank 0.
A quantity whose components transformed under rotations like those of the distance of a
point from a chosen origin (Eq. (1.9), Section 1.2) was called a vector. The transformation
of the components of the vector under a rotation of the coordinates preserves the vector as
a geometric entity (such as an arrow in space), independent of the orientation of the refer-
ence frame. In three-dimensional space, avector is specified by 3= 31 real numbers, for
example, its Cartesian components, and is atensor of rank 1. A tensor of rank n has 3n

components that transform in a definite way.5 This transformation philosophy is of central
importance for tensor analysis and conforms with the mathematician’s concept of vector
and vector (or linear) space and the physicist’s notion that physical observables must not
depend on the choice of coordinate frames. There is a physical basis for such a philosophy:
We describe the physical world by mathematics, but any physical predictions we make

5In N -dimensional space a tensor of rankn hasNn components.
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must be independent of our mathematical conventions, such as a coordinate system with
its arbitrary origin and orientation of its axes.

There is a possible ambiguity in the transformation law of a vector

A′i =
∑

j

aijAj , (2.59)

in whichaij is the cosine of the angle between thex′i -axis and thexj -axis.
If we start with a differential distance vectordr , then, takingdx′i to be a function of the

unprimed variables,

dx′i =
∑

j

∂x′i
∂xj

dxj (2.60)

by partial differentiation. If we set

aij =
∂x′i
∂xj

, (2.61)

Eqs. (2.59) and (2.60) are consistent. Any set of quantitiesAj transforming according to

A′ i =
∑

j

∂x′i
∂xj

Aj (2.62a)

is defined as acontravariant vector, whose indices we write assuperscript; this includes
the Cartesian coordinate vectorxi = xi from now on.

However, we have already encountered a slightly different type of vector transformation.
The gradient of a scalar∇ϕ, defined by

∇ϕ = x̂
∂ϕ

∂x1
+ ŷ

∂ϕ

∂x2
+ ẑ

∂ϕ

∂x3
(2.63)

(usingx1, x2, x3 for x, y, z), transforms as

∂ϕ′

∂x′ i
=
∑

j

∂ϕ

∂xj

∂xj

∂x′ i
, (2.64)

usingϕ = ϕ(x, y, z) = ϕ(x′, y′, z′) = ϕ′, ϕ defined as a scalar quantity. Notice that this
differs from Eq. (2.62) in that we have∂xj/∂x′ i instead of∂x′ i/∂xj . Equation (2.64)
is taken as the definition of acovariant vector, with the gradient as the prototype. The
covariant analog of Eq. (2.62a) is

A′i =
∑

j

∂xj

∂x′ i
Aj . (2.62b)

Only in Cartesian coordinates is

∂xj

∂x′ i
= ∂x′ i

∂xj
= aij (2.65)
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so that there no difference between contravariant and covariant transformations. In other
systems, Eq. (2.65) in general does not apply, and the distinction between contravariant
and covariant is real and must be observed. This is of prime importance in the curved
Riemannian space of general relativity.

In the remainder of this section the components of anycontravariant vector are denoted
by a superscript, Ai , whereas asubscript is used for the components of acovariant
vectorAi .6

Definition of Tensors of Rank 2

Now we proceed to definecontravariant, mixed, and covariant tensors of rank 2by the
following equations for their components under coordinate transformations:

A′ij =
∑

kl

∂x′ i

∂xk

∂x′ j

∂xl
Akl,

B ′ i j =
∑

kl

∂x′ i

∂xk

∂xl

∂x′ j
Bk

l, (2.66)

C′ij =
∑

kl

∂xk

∂x′ i
∂xl

∂x′ j
Ckl .

Clearly, the rank goes as the number of partial derivatives (or direction cosines) in the de-
finition: 0 for a scalar, 1 for a vector, 2 for a second-rank tensor, and so on. Each index
(subscript or superscript) ranges over the number of dimensions of the space. The number
of indices (equal to the rank of tensor) is independent of the dimensions of the space. We
see thatAkl is contravariant with respect to both indices,Ckl is covariant with respect to
both indices, andBk

l transforms contravariantly with respect to the first indexk but covari-
antly with respect to the second indexl. Once again, if we are using Cartesian coordinates,
all three forms of the tensors of second rank contravariant, mixed, and covariant are — the
same.

As with the components of a vector, the transformation laws for the components of a
tensor, Eq. (2.66), yield entities (and properties) that are independent of the choice of ref-
erence frame. This is what makes tensor analysis important in physics. The independence
of reference frame (invariance) is ideal for expressing and investigating universal physical
laws.

The second-rank tensorA (componentsAkl) may be conveniently represented by writing
out its components in a square array (3× 3 if we are in three-dimensional space):

A=



A11 A12 A13

A21 A22 A23

A31 A32 A33


 . (2.67)

This does not mean that any square array of numbers or functions forms a tensor. The
essential condition is that the components transform according to Eq. (2.66).

6This means that the coordinates(x, y, z) are written(x1, x2, x3) sincer transforms as a contravariant vector. The ambiguity of
x2 representing bothx squared andy is the price we pay.
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In the context of matrix analysis the preceding transformation equations become (for
Cartesian coordinates) an orthogonal similarity transformation; see Section 3.3. A geomet-
rical interpretation of a second-rank tensor (the inertia tensor) is developed in Section 3.5.

In summary, tensors are systems of components organized by one or more indices that
transform according to specific rules under a set of transformations. The number of in-
dices is called the rank of the tensor. If the transformations are coordinate rotations in
three-dimensional space, then tensor analysis amounts to what we did in the sections on
curvilinear coordinates and in Cartesian coordinates in Chapter1. In four dimensions of
Minkowski space–time, the transformations are Lorentz transformations, and tensors of
rank 1 are called four-vectors.

Addition and Subtraction of Tensors

The addition and subtraction of tensors is defined in terms of the individual elements, just
as for vectors. If

A+B=C, (2.68)

then

Aij +Bij = Cij .

Of course,A andB must be tensors of the same rank and both expressed in a space of the
same number of dimensions.

Summation Convention

In tensor analysis it is customary to adopt a summation convention to put Eq. (2.66) and
subsequent tensor equations in a more compact form. As long as we are distinguishing
between contravariance and covariance, let us agree that when an index appears on one side
of an equation, once as a superscript and once as a subscript (except for the coordinates
where both are subscripts), we automatically sum over that index. Then we may write the
second expression in Eq. (2.66) as

B ′ i j =
∂x′ i

∂xk

∂xl

∂x′ j
Bk

l, (2.69)

with the summation of the right-hand side overk andl implied. This is Einstein’s summa-
tion convention.7 The indexi is superscript because it is associated with the contravariant
x′ i ; likewisej is subscript because it is related to the covariant gradient.

To illustrate the use of the summation convention and some of the techniques of tensor
analysis, let us show that the now-familiar Kronecker delta,δkl , is really a mixed tensor

7In this context∂x′ i/∂xk might better be written asai
k

and∂xl/∂x′ j asbl
j
.
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of rank 2,δkl .8 The question is: Doesδkl transform according to Eq. (2.66)? This is our
criterion for calling it a tensor. We have, using the summation convention,

δkl
∂x′ i

∂xk

∂xl

∂x′ j
= ∂x′ i

∂xk

∂xk

∂x′ j
(2.70)

by definition of the Kronecker delta. Now,

∂x′ i

∂xk

∂xk

∂x′ j
= ∂x′ i

∂x′ j
(2.71)

by direct partial differentiation of the right-hand side (chain rule). However,x′ i andx′ j

are independent coordinates, and therefore the variation of one with respect to the other
must be zero if they are different, unity if they coincide; that is,

∂x′ i

∂x′ j
= δ′ i j . (2.72)

Hence

δ′ i j =
∂x′ i

∂xk

∂xl

∂x′ j
δkl,

showing that theδkl are indeed the components of a mixed second-rank tensor. Notice that
this result is independent of the number of dimensions of our space. The reason for the
upper indexi and lower indexj is the same as in Eq. (2.69).

The Kronecker delta has one further interesting property. It has the same components in
all of our rotated coordinate systems and is therefore calledisotropic. In Section 2.9 we
shall meet a third-rank isotropic tensor and three fourth-rank isotropic tensors. No isotropic
first-rank tensor (vector) exists.

Symmetry–Antisymmetry

The order in which the indices appear in our description of a tensor is important. In general,
Amn is independent ofAnm, but there are some cases of special interest. If, for allm andn,

Amn =Anm, (2.73)

we call the tensorsymmetric. If, on the other hand,

Amn =−Anm, (2.74)

the tensor isantisymmetric. Clearly, every (second-rank) tensor can be resolved into sym-
metric and antisymmetric parts by the identity

Amn = 1
2

(
Amn +Anm

)
+ 1

2

(
Amn −Anm

)
, (2.75)

the first term on the right being a symmetric tensor, the second, an antisymmetric tensor.
A similar resolution of functions into symmetric and antisymmetric parts is of extreme
importance to quantum mechanics.

8It is common practice to refer to a tensorA by specifying a typical component,Aij . As long as the reader refrains from writing
nonsense such asA=Aij , no harm is done.



138 Chapter 2 Vector Analysis in Curved Coordinates and Tensors

Spinors

It was once thought that the system of scalars, vectors, tensors (second-rank), and so on
formed a complete mathematical system, one that is adequate for describing a physics
independent of the choice of reference frame. But the universe and mathematical physics
are not that simple. In the realm of elementary particles, for example, spin zero particles9

(π mesons,α particles) may be described with scalars, spin 1 particles (deuterons) by
vectors, and spin 2 particles (gravitons) by tensors. This listing omits the most common
particles: electrons, protons, and neutrons, all with spin1

2 . These particles are properly
described byspinors. A spinor is not a scalar, vector, or tensor. A brief introduction to
spinors in the context of group theory(J = 1/2) appears in Section 4.3.

Exercises

2.6.1 Show that if all the components of any tensor of any rank vanish in one particular
coordinate system, they vanish in all coordinate systems.
Note.This point takes on special importance in the four-dimensional curved space of
general relativity. If a quantity, expressed as a tensor, exists in one coordinate system, it
exists in all coordinate systems and is not just a consequence of achoiceof a coordinate
system (as are centrifugal and Coriolis forces in Newtonian mechanics).

2.6.2 The components of tensorA are equal to the corresponding components of tensorB in
one particular coordinate system, denoted by the superscript 0; that is,

A0
ij = B0

ij .

Show that tensorA is equal to tensorB, Aij = Bij , in all coordinate systems.

2.6.3 The last three components of a four-dimensional vector vanish in each of two reference
frames. If the second reference frame is not merely a rotation of the first about thex0
axis, that is, if at least one of the coefficientsai0 (i = 1,2,3) 
= 0, show that the zeroth
component vanishes in all reference frames. Translated into relativistic mechanics this
means that if momentum is conserved in two Lorentz frames, then energy is conserved
in all Lorentz frames.

2.6.4 From an analysis of the behavior of a general second-rank tensor under 90◦ and 180◦

rotations about the coordinate axes, show that an isotropic second-rank tensor in three-
dimensional space must be a multiple ofδij .

2.6.5 The four-dimensional fourth-rank Riemann–Christoffel curvature tensor of general rel-
ativity, Riklm, satisfies the symmetry relations

Riklm =−Rikml =−Rkilm.

With the indices running from 0 to 3, show that the number of independent components
is reduced from 256 to 36 and that the condition

Riklm =Rlmik

9The particle spin is intrinsic angular momentum (in units ofh̄). It is distinct from classical, orbital angular momentum due to
motion.
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further reduces the number of independent components to 21. Finally, if the components
satisfy an identityRiklm + Rilmk + Rimkl = 0, show that the number of independent
components is reduced to 20.
Note.The final three-term identity furnishes new information only if all four indices are
different. Then it reduces the number of independent components by one-third.

2.6.6 Tiklm is antisymmetric with respect to all pairs of indices. How many independent com-
ponents has it (in three-dimensional space)?

2.7 CONTRACTION, DIRECT PRODUCT

Contraction

When dealing with vectors, we formed a scalar product (Section 1.3) by summing products
of corresponding components:

A ·B=AiBi (summation convention). (2.76)

The generalization of this expression in tensor analysis is a process known as contraction.
Two indices, one covariant and the other contravariant, are set equal to each other, and then
(as implied by the summation convention) we sum over this repeated index. For example,
let us contract the second-rank mixed tensorB ′ i j ,

B ′ i i =
∂x′ i

∂xk

∂xl

∂x′ i
Bk

l =
∂xl

∂xk
Bk

l (2.77)

using Eq. (2.71), and then by Eq. (2.72)

B ′ i i = δl kB
k
l = Bk

k. (2.78)

Our contracted second-rank mixed tensor is invariant and therefore a scalar.10 This is ex-
actly what we obtained in Section 1.3 for the dot product of two vectors and in Section 1.7
for the divergence of a vector. In general, the operation of contraction reduces the rank of
a tensor by 2. An example of the use of contraction appears in Chapter 4.

Direct Product

The components of a covariant vector (first-rank tensor)ai and those of a contravariant vec-
tor (first-rank tensor)bj may be multiplied component by component to give the general
termaib

j . This, by Eq. (2.66) is actually a second-rank tensor, for

a′ib
′ j = ∂xk

∂x′ i
ak

∂x′ j

∂xl
bl = ∂xk

∂x′ i
∂x′ j

∂xl

(
akb

l
)
. (2.79)

Contracting, we obtain

a′ib
′ i = akb

k, (2.80)

10In matrix analysis this scalar is thetrace of the matrix, Section 3.2.
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as in Eqs. (2.77) and (2.78), to give the regular scalar product.
The operation of adjoining two vectorsai andbj as in the last paragraph is known as

forming thedirect product . For the case of two vectors, the direct product is a tensor of
second rank. In this sense we may attach meaning to∇E, which was not defined within
the framework of vector analysis. In general, the direct product of two tensors is a tensor
of rank equal to the sum of the two initial ranks; that is,

Ai
jB

kl = Ci
j
kl, (2.81a)

whereCi
j
kl is a tensor of fourth rank. From Eqs. (2.66),

C′ i j kl =
∂x′ i

∂xm

∂xn

∂x′ j
∂x′k

∂xp

∂x′l

∂xq
Cm

n
pq . (2.81b)

The direct product is a technique for creating new, higher-rank tensors.Exer-
cise 2.7.1 is a form of the direct product in which the first factor is∇. Applications appear
in Section 4.6.

When T is an nth-rank Cartesian tensor,(∂/∂xi)Tjkl . . . , a component of∇T, is a
Cartesian tensor of rankn+ 1 (Exercise 2.7.1). However,(∂/∂xi)Tjkl . . . is not a tensor
in more general spaces. In non-Cartesian systems∂/∂x′ i will act on the partial derivatives
∂xp/∂x′q and destroy the simple tensor transformation relation (see Eq. (2.129)).

So far the distinction between a covariant transformation and a contravariant transfor-
mation has been maintained because it does exist in non-Euclidean space and because it is
of great importance in general relativity. In Sections 2.10 and 2.11 we shall develop differ-
ential relations for general tensors. Often, however, because of the simplification achieved,
we restrict ourselves to Cartesian tensors. As noted in Section 2.6, the distinction between
contravariance and covariance disappears.

Exercises

2.7.1 If T···i is a tensor of rankn, show that∂T···i/∂xj is a tensor of rankn+ 1 (Cartesian
coordinates).
Note.In non-Cartesian coordinate systems the coefficientsaij are, in general, functions
of the coordinates, and the simple derivative of a tensor of rankn is not a tensor except
in the special case ofn = 0. In this case the derivative does yield a covariant vector
(tensor of rank 1) by Eq. (2.64).

2.7.2 If Tijk··· is a tensor of rankn, show that
∑

j ∂Tijk···/∂x
j is a tensor of rankn − 1

(Cartesian coordinates).

2.7.3 The operator

∇2− 1

c2

∂2

∂t2

may be written as

4∑

i=1

∂2

∂x2
i

,
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usingx4 = ict . This is the four-dimensional Laplacian, sometimes called the d’Alem-
bertian and denoted by�2. Show that it is ascalar operator, that is, is invariant under
Lorentz transformations.

2.8 QUOTIENT RULE

If Ai andBj are vectors, as seen in Section 2.7, we can easily show thatAiBj is a second-
rank tensor. Here we are concerned with a variety of inverse relations. Consider such equa-
tions as

KiAi = B (2.82a)

KijAj = Bi (2.82b)

KijAjk = Bik (2.82c)

KijklAij = Bkl (2.82d)

KijAk = Bijk. (2.82e)

Inline with our restriction to Cartesian systems, we write all indices as subscripts and,
unless specified otherwise, sum repeated indices.

In each of these expressionsA andB are known tensors of rank indicated by the number
of indices andA is arbitrary. In each caseK is an unknown quantity. We wish to establish
the transformation properties ofK . The quotient rule asserts that if the equation of interest
holds in all (rotated) Cartesian coordinate systems,K is a tensor of the indicated rank. The
importance in physical theory is that the quotient rule can establish the tensor nature of
quantities. Exercise 2.8.1 is a simple illustration of this. The quotient rule (Eq. (2.82b))
shows that the inertia matrix appearing in the angular momentum equationL = Iω, Sec-
tion 3.5, is a tensor.

In proving the quotient rule, we consider Eq. (2.82b) as a typical case. In our primed
coordinate system

K ′ijA
′
j = B ′i = aikBk, (2.83)

using the vector transformation properties ofB. Since the equation holds in all rotated
Cartesian coordinate systems,

aikBk = aik(KklAl). (2.84)

Now, transformingA back into the primed coordinate system11 (compare Eq. (2.62)), we
have

K ′ijA
′
j = aikKklaj lA

′
j . (2.85)

Rearranging, we obtain

(K ′ij − aikaj lKkl)A
′
j = 0. (2.86)

11Note the order of the indices of the direction cosineaj l in this inversetransformation. We have

Al =
∑

j

∂xl

∂x′
j

A′j =
∑

j

aj lA
′
j .
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This must hold for each value of the indexi and for every primed coordinate system. Since
theA′j is arbitrary,12 we conclude

K ′ij = aikaj lKkl, (2.87)

which is our definition of second-rank tensor.
The other equations may be treated similarly, giving rise to other forms of the quotient

rule. One minor pitfall should be noted: The quotient rule does not necessarily apply ifB

is zero. The transformation properties of zero are indeterminate.

Example 2.8.1 EQUATIONS OF MOTION AND FIELD EQUATIONS

In classical mechanics, Newton’s equations of motionmv̇ = F tell us on the basis of the
quotient rule that, if the mass is a scalar and the force a vector, then the accelerationa≡ v̇
is a vector. In other words, the vector character of the force as the driving term imposes its
vector character on the acceleration, provided the scale factorm is scalar.

The wave equation of electrodynamics∂2Aµ = Jµ involves the four-dimensional ver-

sion of the Laplacian∂2= ∂2

c2∂t2
−∇2, a Lorentz scalar, and the external four-vector current

Jµ as its driving term. From the quotient rule, we infer that the vector potentialAµ is a
four-vector as well. If the driving current is a four-vector, the vector potential must be of
rank 1 by the quotient rule. �

The quotient rule is a substitute for the illegal division of tensors.

Exercises

2.8.1 The double summationKijAiBj is invariant for any two vectorsAi andBj . Prove that
Kij is a second-rank tensor.
Note.In the formds2 (invariant)= gij dx

i dxj , this result shows that the matrixgij is
a tensor.

2.8.2 The equationKijAjk = Bik holds for all orientations of the coordinate system. IfA and
B are arbitrary second-rank tensors, show thatK is a second-rank tensor also.

2.8.3 The exponential in a plane wave is exp[i(k · r−ωt)]. We recognizexµ = (ct, x1, x2, x3)

as a prototype vector in Minkowski space. Ifk · r−ωt is a scalar under Lorentz transfor-
mations (Section 4.5), show thatkµ = (ω/c, k1, k2, k3) is a vector in Minkowski space.
Note.Multiplication by h̄ yields(E/c,p) as a vector in Minkowski space.

2.9 PSEUDOTENSORS, DUAL TENSORS

So far our coordinate transformations have been restricted to pure passive rotations. We
now consider the effect of reflections or inversions.

12We might, for instance, takeA′1 = 1 andA′m = 0 for m 
= 1. Then the equationK ′
i1 = aika1lKkl follows immediately. The

rest of Eq. (2.87) comes from other special choices of the arbitraryA′
j
.
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FIGURE 2.9 Inversion of Cartesian coordinates — polar vector.

If we have transformation coefficientsaij =−δij , then by Eq. (2.60)

xi =−x′ i, (2.88)

which is an inversion or parity transformation. Note that this transformation changes our
initial right-handed coordinate system into a left-handed coordinate system.13 Our proto-
type vectorr with components(x1, x2, x3) transforms to

r ′ =
(
x′1, x′2, x′3

)
=
(
−x1,−x2,−x3).

This new vectorr ′ has negative components, relative to the new transformed set of axes.
As shown in Fig. 2.9, reversing the directions of the coordinate axes and changing the
signs of the components givesr ′ = r . The vector (an arrow in space) stays exactly as it
was before the transformation was carried out. The position vectorr and all other vectors
whose components behave this way (reversing sign with a reversal of the coordinate axes)
are calledpolar vectorsand have odd parity.

A fundamental difference appears when we encounter a vector defined as the cross prod-
uct of two polar vectors. LetC = A × B, where bothA andB are polar vectors. From
Eq. (1.33), the components ofC are given by

C1=A2B3−A3B2 (2.89)

and so on. Now, when the coordinate axes are inverted,Ai →−A′ i , Bj →−B ′j , but from

its definitionCk →+C′k ; that is, our cross-product vector, vectorC, doesnot behave like
a polar vector under inversion. To distinguish, we label it a pseudovector or axial vector
(see Fig. 2.10) that has even parity. The termaxial vector is frequently used because these
cross products often arise from a description of rotation.

13This is an inversion of the coordinate system or coordinate axes, objects in the physical world remaining fixed.
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FIGURE 2.10 Inversion of Cartesian coordinates — axial vector.

Examples are

angular velocity, v= ω× r ,

orbital angular momentum, L = r × p,

torque, force= F, N= r × F,

magnetic induction fieldB,
∂B
∂t
= −∇×E.

In v = ω × r , the axial vector is the angular velocityω, andr andv = dr/dt are polar
vectors. Clearly, axial vectors occur frequently in physics, although this fact is usually
not pointed out. In a right-handed coordinate system an axial vectorC has a sense of
rotation associated with it given by a right-hand rule (compare Section 1.4). In the inverted
left-handed system the sense of rotation is a left-handed rotation. This is indicated by the
curved arrows in Fig. 2.10.

The distinction between polar and axial vectors may also be illustrated by a reflection.
A polar vector reflects in a mirror like a real physical arrow, Fig. 2.11a. In Figs. 2.9 and 2.10
the coordinates are inverted; the physical world remains fixed. Here the coordinate axes
remain fixed; the world is reflected — as in a mirror in thexz-plane. Specifically, in this
representation we keep the axes fixed and associate a change of sign with the component
of the vector. For a mirror in thexz-plane,Py →−Py . We have

P= (Px,Py,Pz)

P′ = (Px,−Py,Pz) polar vector.

An axial vector such as a magnetic fieldH or a magnetic momentµ (= current× area
of current loop) behaves quite differently under reflection. Consider the magnetic field
H and magnetic momentµ to be produced by an electric charge moving in a circular path
(Exercise 5.8.4 and Example 12.5.3). Reflection reverses the sense of rotation of the charge.
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a

b

FIGURE 2.11 (a) Mirror in xz-plane; (b) mirror
in xz-plane.

The two current loops and the resulting magnetic moments are shown in Fig. 2.11b. We
have

µ = (µx,µy,µz)

µ′ = (−µx,µy,−µz) reflected axial vector.
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If we agree that the universe does not care whether we use a right- or left-handed coor-
dinate system, then it does not make sense to add an axial vector to a polar vector. In the
vector equationA = B, bothA andB are either polar vectors or axial vectors.14 Similar
restrictions apply to scalars and pseudoscalars and, in general, to the tensors and pseudoten-
sors considered subsequently.

Usually, pseudoscalars, pseudovectors, and pseudotensors will transform as

S′ = JS, C′i = JaijCj , A′ij = Jaikaj lAkl, (2.90)

whereJ is the determinant15 of the array of coefficientsamn, the Jacobian of the parity
transformation. In our inversion the Jacobian is

J =

∣∣∣∣∣∣

−1 0 0
0 −1 0
0 0 −1

∣∣∣∣∣∣
=−1. (2.91)

For a reflection of one axis, thex-axis,

J =

∣∣∣∣∣∣

−1 0 0
0 1 0
0 0 1

∣∣∣∣∣∣
=−1, (2.92)

and again the JacobianJ =−1. On the other hand, for all pure rotations, the JacobianJ is
always+1. Rotation matrices discussed further in Section 3.3.

In Chapter 1 the triple scalar productS = A × B · C was shown to be a scalar (un-
der rotations). Now by considering the parity transformation given by Eq. (2.88), we see
that S →−S, proving that the triple scalar product is actually a pseudoscalar: This be-
havior was foreshadowed by the geometrical analogy of a volume. If all three parameters
of the volume — length, depth, and height — change from positive distances to negative
distances, the product of the three will be negative.

Levi-Civita Symbol

For future use it is convenient to introduce the three-dimensional Levi-Civita symbolεijk ,
defined by

ε123= ε231= ε312= 1,

ε132= ε213= ε321= −1, (2.93)

all otherεijk = 0.

Note thatεijk is antisymmetric with respect to all pairs of indices. Suppose now that we
have a third-rank pseudotensorδijk , which in one particular coordinate system is equal to
εijk . Then

δ′ijk = |a|aipajqakrεpqr (2.94)

14The big exception to this is in beta decay, weak interactions. Here the universe distinguishes between right- and left-handed
systems, and we add polar and axial vector interactions.
15Determinants are described in Section 3.1.
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by definition of pseudotensor. Now,

a1pa2qa3rεpqr = |a| (2.95)

by direct expansion of the determinant, showing thatδ′123= |a|2 = 1= ε123. Considering
the other possibilities one by one, we find

δ′ijk = εijk (2.96)

for rotations and reflections. Henceεijk is a pseudotensor.16,17 Furthermore, it is seen to
be an isotropic pseudotensor with the same components in all rotated Cartesian coordinate
systems.

Dual Tensors

With anyantisymmetric second-rank tensorC (in three-dimensional space) we may asso-
ciate a dual pseudovectorCi defined by

Ci =
1

2
εijkC

jk. (2.97)

Here the antisymmetricC may be written

C=




0 C12 −C31

−C12 0 C23

C31 −C23 0


 . (2.98)

We know thatCi must transform as a vector under rotations from the double contraction of
the fifth-rank (pseudo) tensorεijkCmn but that it is really a pseudovector from the pseudo
nature ofεijk . Specifically, the components ofC are given by

(C1,C2,C3)=
(
C23,C31,C12). (2.99)

Notice the cyclic order of the indices that comes from the cyclic order of the components
of εijk . Eq. (2.99) means that our three-dimensional vector product may literally be taken
to be either a pseudovector or an antisymmetric second-rank tensor, depending on how we
choose to write it out.

If we take three (polar) vectorsA, B, andC, we may define the direct product

V ijk =AiBjCk. (2.100)

By an extension of the analysis of Section 2.6,V ijk is a tensor of third rank. The dual
quantity

V = 1

3!εijkV
ijk (2.101)

16The usefulness ofεpqr extends far beyond this section. For instance, the matricesMk of Exercise 3.2.16 are derived from
(Mr )pq =−iεpqr . Much of elementary vector analysis can be written in a very compact form by usingεijk and the identity of
Exercise 2.9.4 See A. A. Evett, Permutation symbol approach to elementary vector analysis.Am. J. Phys.34: 503 (1966).
17The numerical value ofεpqr is given by the triple scalar product of coordinate unit vectors:

x̂p · x̂q × x̂r .

From this point of view each element ofεpqr is a pseudoscalar, but theεpqr collectively form a third-rank pseudotensor.
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is clearly a pseudoscalar. By expansion it is seen that

V =

∣∣∣∣∣∣

A1 B1 C1

A2 B2 C2

A3 B3 C3

∣∣∣∣∣∣
(2.102)

is our familiar triple scalar product.
For use in writing Maxwell’s equations in covariant form, Section 4.6, we want to extend

this dual vector analysis to four-dimensional space and, in particular, to indicate that the
four-dimensional volume elementdx0dx1dx2dx3 is a pseudoscalar.

We introduce the Levi-Civita symbolεijkl , the four-dimensional analog ofεijk . This
quantityεijkl is defined as totally antisymmetric in all four indices. If(ijkl) is an even
permutation18 of (0, 1, 2, 3), thenεijkl is defined as+1; if it is an odd permutation,
thenεijkl is−1, and 0 if any two indices are equal. The Levi-Civitaεijkl may be proved a
pseudotensor of rank 4 by analysis similar to that used for establishing the tensor nature of
εijk . Introducing the direct product of four vectors as fourth-rank tensor with components

H ijkl =AiBjCkDl, (2.103)

built from the polar vectorsA, B, C, andD, we may define the dual quantity

H = 1

4!εijklH
ijkl, (2.104)

a pseudoscalar due to the quadruple contraction with the pseudotensorεijkl . Now we let
A, B, C, andD be infinitesimal displacements along the four coordinate axes (Minkowski
space),

A =
(
dx0,0,0,0

)

B =
(
0, dx1,0,0

)
, and so on,

(2.105)

and

H = dx0dx1dx2dx3. (2.106)

The four-dimensional volume element is now identified as a pseudoscalar. We use this
result in Section 4.6. This result could have been expected from the results of the special
theory of relativity. The Lorentz–Fitzgerald contraction ofdx1dx2dx3 just balances the
time dilation ofdx0.

We slipped into this four-dimensional space as a simple mathematical extension of the
three-dimensional space and, indeed, we could just as easily have discussed 5-, 6-, orN -
dimensional space. This is typical of the power of the component analysis. Physically, this
four-dimensional space may be taken as Minkowski space,

(
x0, x1, x2, x3)= (ct, x, y, z), (2.107)

wheret is time. This is the merger of space and time achieved in special relativity. The
transformations that describe the rotations in four-dimensional space are the Lorentz trans-
formations of special relativity. We encounter these Lorentz transformations in Section 4.6.

18A permutation is odd if it involves an odd number of interchanges of adjacent indices, such as(0 1 2 3)→ (0 2 1 3). Even
permutations arise from an even number of transpositions of adjacent indices. (Actually the wordadjacentis unnecessary.)
ε0123=+1.
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Irreducible Tensors

For some applications, particularly in the quantum theory of angular momentum, our Carte-
sian tensors are not particularly convenient. In mathematical language our general second-
rank tensorAij is reducible, which means that it can be decomposed into parts of lower
tensor rank. In fact, we have already done this. From Eq. (2.78),

A=Ai
i (2.108)

is a scalar quantity, the trace ofAij .19

The antisymmetric portion,

Bij = 1
2(Aij −Aji), (2.109)

has just been shown to be equivalent to a (pseudo) vector, or

Bij = Ck cyclic permutation ofi, j, k. (2.110)

By subtracting the scalarA and the vectorCk from our original tensor, we have an irre-
ducible, symmetric, zero-trace second-rank tensor,Sij , in which

Sij = 1
2(Aij +Aji)− 1

3Aδij , (2.111)

with five independent components. Then, finally, our original Cartesian tensor may be writ-
ten

Aij = 1
3Aδij +Ck + Sij . (2.112)

The three quantitiesA, Ck , andSij form spherical tensors of rank 0, 1, and 2, respec-
tively, transforming like the spherical harmonicsYM

L (Chapter 12) forL = 0, 1, and 2.
Further details of such spherical tensors and their uses will be found in Chapter 4 and the
books by Rose and Edmonds cited there.

A specific example of the preceding reduction is furnished by the symmetric electric
quadrupole tensor

Qij =
∫ (

3xixj − r2δij
)
ρ(x1, x2, x3) d

3x.

The−r2δij term represents a subtraction of the scalar trace (the threei = j terms). The
resultingQij has zero trace.

Exercises

2.9.1 An antisymmetric square array is given by



0 C3 −C2
−C3 0 C1
C2 −C1 0


=




0 C12 C13

−C12 0 C23

−C13 −C23 0


 ,

19An alternate approach, using matrices, is given in Section 3.3 (see Exercise 3.3.9).
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where(C1,C2,C3) form a pseudovector. Assuming that the relation

Ci =
1

2!εijkC
jk

holds in all coordinate systems, prove thatCjk is a tensor. (This is another form of the
quotient theorem.)

2.9.2 Show that the vector product is unique to three-dimensional space; that is, only in three
dimensions can we establish a one-to-one correspondence between the components of
an antisymmetric tensor (second-rank) and the components of a vector.

2.9.3 Show that inR3

(a) δii = 3,
(b) δijεijk = 0,
(c) εipqεjpq = 2δij ,
(d) εijkεijk = 6.

2.9.4 Show that inR3

εijkεpqk = δipδjq − δiqδjp.

2.9.5 (a) Express the components of a cross-product vectorC, C= A × B, in terms ofεijk
and the components ofA andB.

(b) Use the antisymmetry ofεijk to show thatA ·A ×B= 0.

ANS. (a) Ci = εijkAjBk .

2.9.6 (a) Show that the inertia tensor (matrix) may be written

Iij =m(xixj δij − xixj )

for a particle of massm at (x1, x2, x3).
(b) Show that

Iij =−MilMlj =−mεilkxkεljmxm,

whereMil =m1/2εilkxk . This is the contraction of two second-rank tensors and is
identical with the matrix product of Section 3.2.

2.9.7 Write ∇ ·∇×A and∇×∇ϕ in tensor (index) notation inR3 so that it becomes obvious
that each expression vanishes.

ANS. ∇ ·∇×A = εijk
∂

∂xi

∂

∂xj
Ak,

(∇×∇ϕ)i = εijk
∂

∂xj

∂

∂xk
ϕ.

2.9.8 Expressing cross products in terms of Levi-Civita symbols(εijk), derive theBAC–CAB
rule, Eq. (1.55).
Hint. The relation of Exercise 2.9.4 is helpful.
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2.9.9 Verify that each of the following fourth-rank tensors is isotropic, that is, that it has the
same form independent of any rotation of the coordinate systems.

(a) Aijkl = δij δkl ,
(b) Bijkl = δikδj l + δilδjk ,
(c) Cijkl = δikδj l − δilδjk .

2.9.10 Show that the two-index Levi-Civita symbolεij is a second-rank pseudotensor (in two-
dimensional space). Does this contradict the uniqueness ofδij (Exercise 2.6.4)?

2.9.11 Representεij by a 2×2 matrix, and using the 2×2 rotation matrix of Section 3.3 show
thatεij is invariant under orthogonal similarity transformations.

2.9.12 GivenAk = 1
2εijkB

ij with Bij =−Bji , antisymmetric, show that

Bmn = εmnkAk.

2.9.13 Show that the vector identity

(A ×B) · (C×D)= (A ·C)(B ·D)− (A ·D)(B ·C)

(Exercise 1.5.12) follows directly from the description of a cross product withεijk and
the identity of Exercise 2.9.4.

2.9.14 Generalize the cross product of two vectors ton-dimensional space forn = 4,5, . . . .
Check the consistency of your construction and discuss concrete examples. See Exer-
cise 1.4.17 for the casen= 2.

2.10 GENERAL TENSORS

The distinction between contravariant and covariant transformations was established in
Section 2.6. Then, for convenience, we restricted our attention to Cartesian coordinates
(in which the distinction disappears). Now in these two concluding sections we return to
non-Cartesian coordinates and resurrect the contravariant and covariant dependence. As in
Section 2.6, a superscript will be used for an index denoting contravariant and a subscript
for an index denoting covariant dependence. The metric tensor of Section 2.1 will be used
to relate contravariant and covariant indices.

The emphasis in this section is on differentiation, culminating in the construction of
the covariant derivative. We saw in Section 2.7 that the derivative of a vector yields a
second-rank tensor — in Cartesian coordinates. In non-Cartesian coordinate systems, it is
the covariant derivative of a vector rather than the ordinary derivative that yields a second-
rank tensor by differentiation of a vector.

Metric Tensor

Let us start with the transformation of vectors from one set of coordinates(q1, q2, q3)

to anotherr = (x1, x2, x3). The new coordinates are (in generalnonlinear) functions
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xi(q1, q2, q3) of the old, such as spherical polar coordinates(r, θ,φ). But their differ-
entialsobey thelinear transformation law

dxi = ∂xi

∂qj
dqj , (2.113a)

or

dr = εjdq
j (2.113b)

in vector notation. For convenience we take the basis vectorsε1 = ( ∂x
1

∂q1 ,
∂x1

∂q2 ,
∂x1

∂q3 ), ε2,
andε3 to form a right-handed set. These vectors are not necessarily orthogonal. Also, a
limitation to three-dimensional space will be required only for the discussions of cross
products and curls. Otherwise theseεi may be inN -dimensional space, including the
four-dimensional space–time of special and general relativity. The basis vectorsεi may
be expressed by

εi =
∂r
∂q i

, (2.114)

as in Exercise 2.2.3. Note, however, that theεi here donot necessarily have unit magnitude.
From Exercise 2.2.3, the unit vectors are

ei =
1

hi

∂r
∂qi

(no summation),

and therefore

εi = hiei (no summation). (2.115)

Theεi are related to the unit vectorsei by the scale factorshi of Section 2.2. Theei have no
dimensions; theεi have the dimensions ofhi . In spherical polar coordinates, as a specific
example,

εr = er = r̂ , εθ = reθ = r θ̂ , εϕ = r sinθeϕ = r sinθ ϕ̂. (2.116)

In Euclidean spaces, or in Minkowski space of special relativity, the partial derivatives in
Eq. (2.113) are constants that define the new coordinates in terms of the old ones. We used
them to define the transformation laws of vectors in Eq. (2.59) and (2.62) and tensors in
Eq. (2.66). Generalizing, we define acontravariant vectorV i undergeneralcoordinate
transformations if its components transform according to

V ′ i = ∂xi

∂qj
V j , (2.117a)

or

V′ = V jεj (2.117b)

in vector notation. Forcovariant vectors we inspect the transformation of the gradient
operator

∂

∂xi
= ∂qj

∂xi

∂

∂qj
(2.118)
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using the chain rule. From

∂xi

∂qj

∂qj

∂xk
= δi k (2.119)

it is clear that Eq. (2.118) is related to theinversetransformation of Eq. (2.113),

dqj = ∂qj

∂xi
dxi . (2.120)

Hence we define acovariant vectorVi if

V ′i =
∂qj

∂xi
Vj (2.121a)

holds or, in vector notation,

V′ = Vjε
j , (2.121b)

whereεj are the contravariant vectorsgjiεi = εj .
Second-rank tensors are defined as in Eq. (2.66),

A′ij = ∂xi

∂qk

∂xj

∂q l
Akl, (2.122)

and tensors of higher rank similarly.
As in Section 2.1, we construct the square of a differential displacement

(ds)2= dr · dr =
(
εi dq

i
)2= εi · εj dq i dqj . (2.123)

Comparing this with(ds)2 of Section 2.1, Eq. (2.5), we identifyεi · εj as the covariant
metric tensor

εi · εj = gij . (2.124)

Clearly,gij is symmetric. The tensor nature ofgij follows from the quotient rule, Exer-
cise 2.8.1. We take the relation

gikgkj = δi j (2.125)

to define the corresponding contravariant tensorgik . Contravariantgik enters as the in-
verse20 of covariantgkj . We use this contravariantgik to raise indices, converting a co-
variant index into a contravariant index, as shown subsequently. Likewise the covariantgkj
will be used to lower indices. The choice ofgik andgkj for this raising–lowering operation
is arbitrary. Any second-rank tensor (and its inverse) would do. Specifically, we have

gijεj = εi relating covariant and
contravariant basis vectors,

gijFj = F i relating covariant and
contravariant vector components.

(2.126)

20If the tensorgkj is written as a matrix, the tensorgik is given by the inverse matrix.
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Then

gijε
j = εi as the corresponding index

gijF
j = Fi lowering relations.

(2.127)

It should be emphasized again that theεi andεj do not have unit magnitude. This may
be seen in Eqs. (2.116) and in the metric tensorgij for spherical polar coordinates and its
inversegij :

(gij )=




1 0 0
0 r2 0
0 0 r2 sin2 θ


 (

gij
)
=




1 0 0

0
1

r2
0

0 0
1

r2 sin2 θ



.

Christoffel Symbols

Let us form the differential of a scalarψ ,

dψ = ∂ψ

∂q i
dq i . (2.128)

Since thedq i are the components of a contravariant vector, the partial derivatives
∂ψ/∂q i must form a covariant vector — by the quotient rule. The gradient of a scalar be-
comes

∇ψ = ∂ψ

∂q i
εi . (2.129)

Note that∂ψ/∂q i are not the gradient components of Section 2.2 — becauseεi 
= ei of
Section 2.2.

Moving on to the derivatives of a vector, we find that the situation is much more compli-
cated because the basis vectorsεi are in general not constant. Remember, we are no longer
restricting ourselves to Cartesian coordinates and the nice, convenientx̂, ŷ, ẑ! Direct dif-
ferentiation of Eq. (2.117a) yields

∂V ′k

∂qj
= ∂xk

∂q i

∂V i

∂qj
+ ∂2xk

∂qj∂q i
V i, (2.130a)

or, in vector notation,

∂V′

∂qj
= ∂V i

∂qj
εi + V i ∂εi

∂qj
. (2.130b)

The right side of Eq. (2.130a) differs from the transformation law for a second-rank mixed
tensor by the second term, which contains second derivatives of the coordinatesxk . The
latter are nonzero for nonlinear coordinate transformations.

Now, ∂εi/∂qj will be some linear combination of theεk , with the coefficient depending
on the indicesi andj from the partial derivative and indexk from the base vector. We
write

∂εi

∂qj
= Ŵk

ijεk. (2.131a)
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Multiplying by εm and usingεm · εk = δmk from Exercise 2.10.2, we have

Ŵm
ij = εm · ∂εi

∂qj
. (2.131b)

TheŴk
ij is a Christoffel symbol of thesecond kind. It is also called acoefficient of con-

nection. TheseŴk
ij are not third-rank tensors and the∂V i/∂qj of Eq. (2.130a) are not

second-rank tensors. Equations (2.131) should be compared with the results quoted in Ex-
ercise 2.2.3 (remembering that in generalεi 
= ei ). In Cartesian coordinates,Ŵk

ij = 0 for all
values of the indicesi, j , andk. These Christoffel three-index symbols may be computed
by the techniques of Section 2.2. This is the topic of Exercise 2.10.8. Equation (2.138)
offers an easier method. Using Eq. (2.114), we obtain

∂εi

∂qj
= ∂2r

∂qj ∂q i
= ∂εj

∂q i
= Ŵk

jiεk. (2.132)

Hence these Christoffel symbols are symmetric in the two lower indices:

Ŵk
ij = Ŵk

ji . (2.133)

Christoffel Symbols as Derivatives of the Metric Tensor

It is often convenient to have an explicit expression for the Christoffel symbols in terms of
derivatives of the metric tensor. As an initial step, we define the Christoffel symbol of the
first kind [ij, k] by

[ij, k] ≡ gmkŴ
m
ij , (2.134)

from which the symmetry[ij, k] = [ji, k] follows. Again, this[ij, k] is not a third-rank
tensor. From Eq. (2.131b),

[ij, k] = gmkε
m · ∂εi

∂qj

= εk ·
∂εi

∂qj
. (2.135)

Now we differentiategij = εi · εj , Eq. (2.124):

∂gij

∂qk
= ∂εi

∂qk
· εj + εi ·

∂εj

∂qk

= [ik, j ] + [jk, i] (2.136)

by Eq. (2.135). Then

[ij, k] = 1

2

{
∂gik

∂qj
+ ∂gjk

∂q i
− ∂gij

∂qk

}
, (2.137)

and

Ŵs
ij = gks[ij, k]

= 1

2
gks
{
∂gik

∂qj
+ ∂gjk

∂q i
− ∂gij

∂qk

}
. (2.138)
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These Christoffel symbols are applied in the next section.

Covariant Derivative

With the Christoffel symbols, Eq. (2.130b) may be rewritten

∂V′

∂qj
= ∂V i

∂qj
εi + V iŴk

ijεk. (2.139)

Now, i andk in the last term are dummy indices. Interchangingi andk (in this one term),
we have

∂V′

∂qj
=
(
∂V i

∂qj
+ V kŴi

kj

)
εi . (2.140)

The quantity in parenthesis is labeled acovariant derivative, V i
;j . We have

V i
;j ≡

∂V i

∂qj
+ V kŴi

kj . (2.141)

The;j subscript indicates differentiation with respect toqj . The differentialdV′ becomes

dV′ = ∂V′

∂qj
dqj = [V i

;j dq
j ]εi . (2.142)

A comparison with Eq. (2.113) or (2.122) shows that the quantity in square brackets is
theith contravariant component of a vector. Sincedqj is thej th contravariant component
of a vector (again, Eq. (2.113)),V i

;j must be theij th component of a (mixed) second-rank
tensor (quotient rule). The covariant derivatives of the contravariant components of a vector
form a mixed second-rank tensor,V i

;j .
Since the Christoffel symbols vanish in Cartesian coordinates, the covariant derivative

and the ordinary partial derivative coincide:

∂V i

∂qj
= V i

;j (Cartesian coordinates). (2.143)

The covariant derivative of a covariant vectorVi is given by (Exercise 2.10.9)

Vi;j =
∂Vi

∂qj
− VkŴ

k
ij . (2.144)

Like V i
;j , Vi;j is a second-rank tensor.

The physical importance of the covariant derivative is that “A consistent replacement
of regular partial derivatives by covariant derivatives carries the laws of physics (in com-
ponent form) from flat space–time into the curved (Riemannian) space–time of general
relativity. Indeed, this substitution may be taken as a mathematical statement of Einstein’s
principle of equivalence.”21

21C. W. Misner, K. S. Thorne, and J. A. Wheeler,Gravitation. San Francisco: W. H. Freeman (1973), p. 387.



2.10 General Tensors 157

Geodesics, Parallel Transport

The covariant derivative of vectors, tensors, and the Christoffel symbols may also be ap-
proached from geodesics. A geodesic in Euclidean space is a straight line. In general, it is
the curve of shortest length between two points and the curve along which a freely falling
particle moves. The ellipses of planets are geodesics around the sun, and the moon is in
free fall around the Earth on a geodesic. Since we can throw a particle in any direction, a
geodesic can have any direction through a given point. Hence the geodesic equation can
be obtained from Fermat’s variational principle of optics (see Chapter 17 for Euler’s equa-
tion),

δ

∫
ds = 0, (2.145)

whereds2 is the metric, Eq. (2.123), of our space. Using the variation ofds2,

2ds δ ds = dq i dqj δ gij + gij dq
i δ dqj + gij dq

j δ dq i (2.146)

in Eq. (2.145) yields

1

2

∫ [
dq i

ds

dqj

ds
δgij + gij

dq i

ds

d

ds
δ dqj + gij

dqj

ds

d

ds
δ dq i

]
ds = 0, (2.147)

whereds measures the length on the geodesic. Expressing the variations

δgij =
∂gij

∂qk
δ dqk ≡ (∂kgij )δ dq

k

in terms of theindependent variationsδ dqk , shifting their derivatives in the other two
terms of Eq. (2.147) upon integrating by parts, and renaming dummy summation indices,
we obtain

1

2

∫ [
dq i

ds

dqj

ds
∂kgij −

d

ds

(
gik

dq i

ds
+ gkj

dqj

ds

)]
δ dqk ds = 0. (2.148)

The integrand of Eq. (2.148), set equal to zero, is the geodesic equation. It is the Euler
equation of our variational problem. Upon expanding

dgik

ds
= (∂jgik)

dqj

ds
,

dgkj

ds
= (∂igkj )

dq i

ds
(2.149)

along the geodesic we find

1

2

dq i

ds

dqj

ds
(∂kgij − ∂jgik − ∂igkj )− gik

d2q i

ds2
= 0. (2.150)

Multiplying Eq. (2.150) withgkl and using Eq. (2.125), we find thegeodesicequation

d2q l

ds2
+ dq i

ds

dqj

ds

1

2
gkl(∂igkj + ∂jgik − ∂kgij )= 0, (2.151)

where the coefficient of the velocities is the Christoffel symbolŴl
ij of Eq. (2.138).

Geodesics are curves that are independent of the choice of coordinates. They can be
drawn through any point in space in various directions. Since the lengthds measured along
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the geodesic is a scalar, the velocitiesdq i/ds (of a freely falling particle along the geodesic,
for example) form a contravariant vector. HenceVk dq

k/ds is a well-defined scalar on
any geodesic, which we can differentiate in order to define the covariant derivative of any
covariant vectorVk . Using Eq. (2.151) we obtain from the scalar

d

ds

(
Vk

dqk

ds

)
= dVk

ds

dqk

ds
+ Vk

d2qk

ds2

= ∂Vk

∂q i

dq i

ds

dqk

ds
− VkŴ

k
ij

dq i

ds

dqj

ds
(2.152)

= dq i

ds

dqk

ds

(
∂Vk

∂q i
− Ŵl

ikVl

)
.

When the quotient theorem is applied to Eq. (2.152) it tells us that

Vk;i =
∂Vk

∂q i
− Ŵl

ikVl (2.153)

is a covariant tensor that defines the covariant derivative ofVk , consistent with Eq. (2.144).
Similarly, higher-order tensors may be derived.

The second term in Eq. (2.153) defines theparallel transport or displacement,

δVk = Ŵl
kiVlδq

i, (2.154)

of the covariant vectorVk from the point with coordinatesq i to q i + δq i . The parallel
transport,δU k , of a contravariant vectorU k may be found from the invariance of the scalar
productU kVk under parallel transport,

δ(U kVk)= δU kVk +U kδVk = 0, (2.155)

in conjunction with the quotient theorem.
In summary, when we shift a vector to a neighboring point, parallel transport prevents it

from sticking out of our space. This can be clearly seen on the surface of a sphere in spher-
ical geometry, where a tangent vector is supposed to remain a tangent upon translating it
along some path on the sphere. This explains why the covariant derivative of a vector or
tensor is naturally defined by translating it along a geodesic in the desired direction.

Exercises

2.10.1 Equations (2.115) and (2.116) use the scale factorhi , citing Exercise 2.2.3. In Sec-
tion 2.2 we had restricted ourselves to orthogonal coordinate systems, yet Eq. (2.115)
holds for nonorthogonal systems. Justify the use of Eq. (2.115) for nonorthogonal sys-
tems.

2.10.2 (a) Show thatεi · εj = δij .
(b) From the result of part (a) show that

F i = F · εi and Fi = F · εi .



CHAPTER 4

GROUP THEORY

Disciplined judgment, about what is neat
and symmetrical and elegant has time and
time again proved an excellent guide to
how nature works

MURRAY GELL-MANN

4.1 INTRODUCTION TO GROUP THEORY

In classical mechanics thesymmetry of a physical system leads toconservation laws.
Conservation of angular momentum is a direct consequence of rotational symmetry, which
meansinvariance under spatial rotations. In the first third of the 20th century, Wigner and
others realized that invariance was a key concept in understanding the new quantum phe-
nomena and in developing appropriate theories. Thus, in quantum mechanics the concept
of angular momentum and spin has become even more central. Its generalizations,isospin
in nuclear physics and theflavor symmetry in particle physics, are indispensable tools
in building and solving theories. Generalizations of the concept ofgauge invarianceof
classical electrodynamics to the isospin symmetry lead to the electroweak gauge theory.

In each case the set of these symmetry operations forms a group. Group theory is the
mathematical tool to treat invariants and symmetries. It brings unification and formalization
of principles, such as spatial reflections, or parity, angular momentum, and geometry, that
are widely used by physicists.

In geometry the fundamental role of group theory was recognized more than a cen-
tury ago by mathematicians (e.g., Felix Klein’s Erlanger Program). In Euclidean geometry
the distance between two points, the scalar product of two vectors or metric, does not
change under rotations or translations. These symmetries are characteristic of this geom-
etry. In special relativity the metric, or scalar product of four-vectors, differs from that of

241
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Euclidean geometry in that it is no longer positive definite and is invariant under Lorentz
transformations.

For a crystal the symmetry group contains only a finite number of rotations at discrete
values of angles or reflections. The theory of suchdiscrete or finite groups, developed
originally as a branch of pure mathematics, now is a useful tool for the development of
crystallography and condensed matter physics. A brief introduction to this area appears in
Section 4.7. When the rotations depend on continuously varying angles (the Euler angles
of Section 3.3) the rotation groups have an infinite number of elements. Such continuous
(or Lie1) groups are the topic of Sections 4.2–4.6. In Section 4.8 we give an introduction
to differential forms, with applications to Maxwell’s equations and topics of Chapters 1
and 2, which allows seeing these topics from a different perspective.

Definition of a Group

A groupG may be defined as a set of objects or operations, rotations, transformations,
called the elements ofG, that may be combined, or “multiplied,” to form a well-defined
product inG, denoted by a *, that satisfies the following four conditions.

1. If a andb are any two elements ofG, then the producta ∗ b is also an element ofG,
whereb acts beforea; or (a, b)→ a ∗ b associates (or maps) an elementa ∗ b of G
with the pair(a, b) of elements ofG. This property is known as “G is closed under
multiplication of its own elements.”

2. This multiplication is associative:(a ∗ b) ∗ c= a ∗ (b ∗ c).
3. There is a unit element2 1 in G such that 1∗ a = a ∗ 1= a for every elementa in G.

The unit is unique: 1= 1′ ∗ 1= 1′.
4. There is an inverse, or reciprocal, of each elementa of G, labeleda−1, such that

a ∗ a−1= a−1 ∗ a = 1. The inverse is unique: Ifa−1 anda′−1 are both inverses ofa,
thena′−1= a′−1 ∗ (a ∗ a′−1)= (a′−1 ∗ a) ∗ a−1= a−1.

Since the * for multiplication is tedious to write, it is customary to drop it and simply let it
be understood. From now on, we writeab instead ofa ∗ b .

• If a subsetG′ of G is closed under multiplication, it is a group and called asubgroup
of G; that is,G′ is closed under the multiplication ofG. The unit ofG always forms a
subgroup ofG.

• If gg′g−1 is an element ofG′ for any g of G andg′ of G′, thenG′ is called anin-
variant subgroup of G. The subgroup consisting of the unit is invariant. If the group
elements are square matrices, thengg′g−1 corresponds to a similarity transformation
(see Eq. (3.100)).

• If ab = ba for all a, b of G, the group is calledabelian, that is, the order in products
does not matter; commutative multiplication is often denoted by a+ sign. Examples are
vector spaces whose unit is the zero vector and−a is the inverse ofa for all elements
a in G.

1After the Norwegian mathematician Sophus Lie.
2Following E. Wigner, the unit element of a group is often labeledE, from the GermanEinheit, that is, unit, or just 1, orI for
identity.
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Example 4.1.1 ORTHOGONAL AND UNITARY GROUPS

Orthogonaln× n matrices form the groupO(n), andSO(n) if their determinants are+1
(S stands for “special”). IfÕi = O−1

i for i = 1 and 2 (see Section 3.3 for orthogonal
matrices) are elements ofO(n), then the product

Õ1O2= Õ2Õ1=O−1
2 O−1

1 = (O1O2)
−1

is also an orthogonal matrix inO(n), thus proving closure under (matrix) multiplication.
The inverse is the transpose (orthogonal) matrix. The unit of the group is then-dimensional
unit matrix 1n. A real orthogonaln × n matrix hasn(n − 1)/2 independent parameters.
For n= 2, there is only one parameter: one angle. Forn= 3, there are three independent
parameters: the three Euler angles of Section 3.3.

If Õi =O−1
i (for i = 1 and 2) are elements ofSO(n), then closure requires proving in

addition that their product has determinant+1, which follows from the product theorem in
Chapter 3.

Likewise, unitaryn× n matrices form the groupU(n), andSU(n) if their determinants
are+1. If U†

i =U−1
i (see Section 3.4 for unitary matrices) are elements ofU(n), then

(U1U2)
†=U†

2U†
1=U−1

2 U−1
1 = (U1U2)

−1,

so the product is unitary and an element ofU(n), thus proving closure under multiplication.
Each unitary matrix has an inverse (its Hermitian adjoint), which again is unitary.

If U†
i =U−1

i are elements ofSU(n), then closure requires us to prove that their product
also has determinant+1, which follows from the product theorem in Chapter 3. �

• Orthogonal groups are calledLie groups; that is, they depend on continuously varying
parameters (the Euler angles and their generalization for higher dimensions); they are
compactbecause the angles vary over closed, finite intervals (containing the limit of
any converging sequence of angles). Unitary groups are also compact. Translations
form a noncompact group because the limit of translations with distanced→∞ is not
part of the group. The Lorentz group is not compact either.

Homomorphism, Isomorphism

There may be a correspondence between the elements of two groups: one-to-one, two-to-
one, or many-to-one. If this correspondence preserves the group multiplication, we say
that the two groups arehomomorphic. A most important homomorphic correspondence
between the rotation groupSO(3) and the unitary groupSU(2) is developed in Section 4.2.
If the correspondence is one-to-one, still preserving the group multiplication,3 then the
groups areisomorphic.

• If a groupG is homomorphic to a group of matricesG′, thenG′ is called arepresen-
tation of G. If G andG′ are isomorphic, the representation is calledfaithful . There
are many representations of groups; they are not unique.

3Suppose the elements of one group are labeledgi , the elements of a second grouphi . Thengi ↔ hi is a one-to-one correspon-
dence for all values ofi. If gigj = gk andhihj = hk , thengk andhk must be the corresponding group elements.
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Example 4.1.2 ROTATIONS

Another instructive example for a group is the set of counterclockwise coordinate rotations
of three-dimensional Euclidean space about itsz-axis. From Chapter 3 we know that such a
rotation is described by a linear transformation of the coordinates involving a 3× 3 matrix
made up of three rotations depending on the Euler angles. If thez-axis is fixed, the linear
transformation is through an angleϕ of thexy-coordinate system to a new orientation in
Eq. (1.8), Fig. 1.6, and Section 3.3:



x′

y′

z′


=Rz(ϕ)



x

y

z


≡




cosϕ sinϕ 0
−sinϕ cosϕ 0

0 0 1





x

y

z


 (4.1)

involves only one angle of the rotation about thez-axis. As shown in Chapter 3, the linear
transformation of two successive rotations involves the product of the matrices correspond-
ing to the sum of the angles. The product corresponds to two rotations,Rz(ϕ1)Rz(ϕ2), and
is defined by rotating first by the angleϕ2 and then byϕ1. According to Eq. (3.29), this
corresponds to the product of the orthogonal 2× 2 submatrices,

(
cosϕ1 sinϕ1

−sinϕ1 cosϕ1

)(
cosϕ2 sinϕ2

−sinϕ2 cosϕ2

)

=
(

cos(ϕ1+ ϕ2) sin(ϕ1+ ϕ2)

−sin(ϕ1+ ϕ2) cos(ϕ1+ ϕ2)

)
,

(4.2)

using the addition formulas for the trigonometric functions. The unity in the lower right-
hand corner of the matrix in Eq. (4.1) is also reproduced upon multiplication. The product is
clearly a rotation, represented by the orthogonal matrix with angleϕ1+ϕ2. The associative
group multiplication corresponds to the associative matrix multiplication. It iscommuta-
tive, or abelian, because the order in which these rotations are performed does not matter.
The inverse of the rotation with angleϕ is that with angle−ϕ. The unit corresponds to the
angleϕ = 0. Striking off the coordinate vectors in Eq. (4.1), we can associate the matrix
of the linear transformation with each rotation, which is a group multiplication preserving
one-to-one mapping, an isomorphism: The matrices form a faithful representation of the
rotation group. The unity in the right-hand corner is superfluous as well, like the coordinate
vectors, and may be deleted. This defines another isomorphism and representation by the
2× 2 submatrices:

Rz(ϕ)=




cosϕ sinϕ 0

−sinϕ cosϕ 0

0 0 1


→R(ϕ)=

(
cosϕ sinϕ

−sinϕ cosϕ

)
. (4.3)

The group’s name isSO(2), if the angleϕ varies continuously from 0 to 2π ; SO(2) has
infinitely many elements and is compact.

The group of rotationsRz is obviously isomorphic to the group of rotations in Eq. (4.3).
The unity with angleϕ = 0 and the rotation withϕ = π form a finite subgroup. The finite
subgroups with angles 2πm/n,n an integer andm= 0,1, . . . , n− 1 arecyclic; that is, the
rotationsR(2πm/n)=R(2π/n)m. �
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In the following we shall discuss only the rotation groupsSO(n) and unitary groups
SU(n) among the classical Lie groups. (More examples of finite groups will be given in
Section 4.7.)

Representations — Reducible and Irreducible

The representation of group elements by matrices is a very powerful technique and has
been almost universally adopted by physicists. The use of matrices imposes no significant
restriction. It can be shown that the elements of any finite group and of the continuous
groups of Sections 4.2–4.4 may be represented by matrices. Examples are the rotations
described in Eq. (4.3).

To illustrate how matrix representations arise from a symmetry, consider the station-
ary Schrödinger equation (or some other eigenvalue equation, such asIvi = Iivi for the
principal moments of inertia of a rigid body in classical mechanics, say),

Hψ =Eψ. (4.4)

Let us assume that the HamiltonianH stays invariant under a groupG of transformations
R in G (coordinate rotations, for example, for a central potentialV (r) in the Hamiltonian
H ); that is,

HR =RHR−1=H, RH =HR. (4.5)

Now take a solutionψ of Eq. (4.4) and “rotate” it:ψ → Rψ . ThenRψ has thesame
energy Ebecause multiplying Eq. (4.4) byR and using Eq. (4.5) yields

RHψ =E(Rψ)=
(
RHR−1)Rψ =H(Rψ). (4.6)

In other words, all rotated solutionsRψ aredegeneratein energy or form what physicists
call a multiplet . For example, the spin-up and -down states of a bound electron in the
ground state of hydrogen form a doublet, and the states with projection quantum numbers
m = −l,−l + 1, . . . , l of orbital angular momentuml form a multiplet with 2l + 1 basis
states.

Let us assume that this vector spaceVψ of transformed solutions has a finite dimen-
sion n. Let ψ1,ψ2, . . . ,ψn be a basis. SinceRψj is a member of the multiplet, we can
expand it in terms of its basis,

Rψj =
∑

k

rjkψk. (4.7)

Thus, with eachR in G we can associate a matrix(rjk). Just as in Example 4.1.2, two
successive rotations correspond to the product of their matrices, so this mapR→ (rjk) is a
representation ofG. It is necessary for a representation to beirreducible that we can take
any element ofVψ and, by rotating withall elementsR of G, transform it intoall other
elements ofVψ . If not all elements ofVψ are reached, thenVψ splits into a direct sum of
two or more vector subspaces,Vψ = V1 ⊕ V2 ⊕ · · · , which are mapped into themselves
by rotating their elements. For example, the 2s state and 2p states of principal quantum
numbern= 2 of the hydrogen atom have the same energy (that is, are degenerate) and form
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a reducible representation, because the 2s state cannot be rotated into the 2p states, and
vice versa (angular momentum is conserved under rotations). In this case the representation
is calledreducible. Then we can find a basis inVψ (that is, there is a unitary matrixU) so
that

U(rjk)U†=




r1 0 · · ·
0 r2 · · ·
...

...


 (4.8)

for all R of G, andall matrices(rjk) havesimilar block-diagonal shape. Herer1, r2, . . .

are matrices of lower dimension than(rjk) that are lined up along the diagonal and the0’s
are matrices made up of zeros. We may say that the representation has been decomposed
into r1+ r2+ · · · along withVψ = V1⊕ V2⊕ · · · .

The irreducible representations play a role in group theory that is roughly analogous to
the unit vectors of vector analysis. They are the simplest representations; all others can be
built from them. (See Section 4.4 on Clebsch–Gordan coefficients and Young tableaux.)

Exercises

4.1.1 Show that ann× n orthogonal matrix hasn(n− 1)/2 independent parameters.
Hint. The orthogonality condition, Eq. (3.71), provides constraints.

4.1.2 Show that ann× n unitary matrix hasn2− 1 independent parameters.
Hint. Each element may be complex, doubling the number of possible parameters. Some
of the constraint equations are likewise complex and count as two constraints.

4.1.3 The special linear groupSL(2) consists of all 2× 2 matrices (with complex elements)
having a determinant of+1. Show that such matrices form a group.
Note. TheSL(2) group can be related to the full Lorentz group in Section 4.4, much as
theSU(2) group is related toSO(3).

4.1.4 Show that the rotations about thez-axis form a subgroup ofSO(3). Is it an invariant
subgroup?

4.1.5 Show that ifR,S,T are elements of a groupG so thatRS = T andR→ (rik), S→
(sik) is a representation according to Eq. (4.7), then

(rik)(sik)=
(
tik =

∑

n

rinsnk

)
,

that is, group multiplication translates into matrix multiplication for any group repre-
sentation.

4.2 GENERATORS OF CONTINUOUS GROUPS

A characteristic property of continuous groups known as Lie groups is that the parameters
of a product element are analytic functions4 of the parameters of the factors. The analytic

4Analytichere means having derivatives of all orders.
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nature of the functions (differentiability) allows us to develop the concept of generator and
to reduce the study of the whole group to a study of the group elements in the neighborhood
of the identity element.

Lie’s essential idea was to study elementsR in a groupG that are infinitesimally close
to the unity ofG. Let us consider theSO(2) group as a simple example. The 2× 2 ro-
tation matrices in Eq. (4.2) can be written in exponential form using the Euler identity,
Eq. (3.170a), as

R(ϕ)=
(

cosϕ sinϕ

−sinϕ cosϕ

)
= 12 cosϕ + iσ2 sinϕ = exp(iσ2ϕ). (4.9)

From the exponential form it is obvious that multiplication of these matrices is equivalent
to addition of the arguments

R(ϕ2)R(ϕ1)= exp(iσ2ϕ2)exp(iσ2ϕ1)= exp
(
iσ2(ϕ1+ ϕ2)

)
=R(ϕ1+ ϕ2).

Rotations close to 1 have small angleϕ ≈ 0.
This suggests that we look for an exponential representation

R= exp(iεS)= 1+ iεS+O
(
ε2), ε→ 0, (4.10)

for group elementsR in G close to the unity 1. The infinitesimal transformations areεS,
and theS are called generators ofG. They form a linear space because multiplication
of the group elementsR translates into addition of generatorsS. The dimension of this
vector space (over the complex numbers) is theorder of G, that is, the number of linearly
independent generators of the group.

If R is a rotation, it does not change the volume element of the coordinate space that it
rotates, that is, det(R)= 1, and we may use Eq. (3.171) to see that

det(R)= exp
(
trace(lnR)

)
= exp

(
iε trace(S)

)
= 1

impliesε trace(S)= 0 and, upon dividing by the small but nonzero parameterε, thatgen-
erators are traceless,

trace(S)= 0. (4.11)

This is the case not only for the rotation groupsSO(n) but also for unitary groupsSU(n).
If R of G in Eq. (4.10) is unitary, thenS† = S is Hermitian, which is also the case for

SO(n) andSU(n). This explains why the extrai has been inserted in Eq. (4.10).
Next we go around the unity in four steps, similar to parallel transport in differential

geometry. We expand the group elements

Ri = exp(iεiSi)= 1+ iεiSi − 1
2ε

2
i S2

i + · · · ,
R−1
i = exp(−iεiSi)= 1− iεiSi − 1

2ε
2
i S2

i + · · · ,
(4.12)

to second order in the small group parameterεi because the linear terms and several
quadratic terms all cancel in the product (Fig. 4.1)

R−1
i R−1

j RiRj = 1+ εiεj [Sj ,Si] + · · · ,

= 1+ εiεj
∑

k

ckjiSk + · · · , (4.13)
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FIGURE 4.1 Illustration of Eq. (4.13).

when Eq. (4.12) is substituted into Eq. (4.13). The last line holds because the product in
Eq. (4.13) is again a group element,Rij , close to the unity in the groupG. Hence its
exponent must be a linear combination of the generatorsSk , and its infinitesimal group
parameter has to be proportional to the productεiεj . Comparing both lines in Eq. (4.13)
we find theclosurerelation of the generators of the Lie groupG,

[Si,Sj ] =
∑

k

ckijSk. (4.14)

The coefficientsckij are the structure constants of the groupG. Since the commutator in
Eq. (4.14) is antisymmetric ini andj , so are the structure constants in the lower indices,

ckij =−ckji . (4.15)

If the commutator in Eq. (4.14) is taken as a multiplication law of generators, we see
that the vector space of generators becomes an algebra, theLie algebra G of the groupG.
An algebrahas two group structures, a commutative product denoted by a+ symbol (this
is the addition of infinitesimal generators of a Lie group) and a multiplication (the commu-
tator of generators). Often an algebra is a vector space with a multiplication, such as a ring
of square matrices. ForSU(l+ 1) the Lie algebra is calledAl , for SO(2l+ 1) it is Bl , and
for SO(2l) it is Dl , wherel = 1,2, . . . is a positive integer, later called therank of the Lie
groupG or of its algebraG.

Finally, theJacobi identity holds for all double commutators
[
[Si,Sj ],Sk

]
+
[
[Sj ,Sk],Si

]
+
[
[Sk,Si],Sj

]
= 0, (4.16)

which is easily verified using the definition of any commutator[A,B] ≡AB −BA. When
Eq. (4.14) is substituted into Eq. (4.16) we find another constraint on structure constants,

∑

m

{
cmij [Sm,Sk] + cmjk[Sm,Si] + cmki[Sm,Sj ]

}
= 0. (4.17)

Upon inserting Eq. (4.14) again, Eq. (4.17) implies that
∑

mn

{
cmijc

n
mkSn + cmjkc

n
miSn + cmkic

n
mjSn

}
= 0, (4.18)
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where the common factorSn (and the sum overn) may be dropped because the generators
are linearly independent. Hence

∑

m

{
cmij c

n
mk + cmjkc

n
mi + cmkic

n
mj

}
= 0. (4.19)

The relations (4.14), (4.15), and (4.19) form the basis of Lie algebras from which finite
elements of the Lie group near its unity can be reconstructed.

Returning to Eq. (4.5), the inverse ofR is R−1= exp(−iεS). We expandHR according
to the Baker–Hausdorff formula, Eq. (3.172),

H =HR = exp(iεS)H exp(−iεS)=H + iε[S,H ] − 1
2ε

2[S[S,H ]
]
+ · · · (4.20)

We dropH from Eq. (4.20), divide by the small (but nonzero),ε, and letε→ 0. Then
Eq. (4.20) implies that the commutator

[S,H ] = 0. (4.21)

If S andH are Hermitian matrices, Eq. (4.21) implies thatS andH can be simultaneously
diagonalized and have common eigenvectors (for matrices, see Section 3.5; for operators,
see Schur’s lemma in Section 4.3). IfS andH are differential operators like the Hamil-
tonian and orbital angular momentum in quantum mechanics, then Eq. (4.21) implies that
S andH have common eigenfunctions and that the degenerate eigenvalues ofH can be
distinguished by the eigenvalues of the generatorsS. These eigenfunctions and eigenval-
ues,s, are solutions of separate differential equations,Sψs = sψs , so group theory (that
is, symmetries) leads to a separation of variables for a partial differential equation that is
invariant under the transformations of the group.

For example, let us take the single-particle Hamiltonian

H =− h̄2

2m

1

r2

∂

∂r
r2 ∂

∂r
+ h̄2

2mr2
L2+ V (r)

that is invariant underSO(3) and, therefore, a function of the radial distancer , the radial
gradient, and the rotationally invariant operatorL2 of SO(3). Upon replacing the orbital
angular momentum operatorL2 by its eigenvaluel(l+1) we obtain the radial Schrödinger
equation (ODE),

HRl(r)=
[
− h̄2

2m

1

r2

d

dr
r2 d

dr
+ h̄2l(l + 1)

2mr2
+ V (r)

]
Rl(r)=ElRl(r),

whereRl(r) is the radial wave function.
For cylindrical symmetry, the invariance ofH under rotations about thez-axis would

requireH to be independent of the rotation angleϕ, leading to the ODE

HRm(z, ρ)=EmRm(z, ρ),

with m the eigenvalue ofLz =−i∂/∂ϕ, thez-component of the orbital angular momentum
operator. For more examples, see the separation of variables method for partial differen-
tial equations in Section 9.3 and special functions in Chapter 12. This is by far the most
important application of group theory in quantum mechanics.

In the next subsections we shall study orthogonal and unitary groups as examples to
understand better the general concepts of this section.



250 Chapter 4 Group Theory

Rotation Groups SO(2) and SO(3)

ForSO(2) as defined by Eq. (4.3) there is only one linearly independent generator,σ2, and
the order ofSO(2) is 1. We getσ2 from Eq. (4.9) by differentiation at the unity ofSO(2),
that is,ϕ = 0,

−idR(ϕ)/dϕ|ϕ=0=−i
(
−sinϕ cosϕ

−cosϕ −sinϕ

)∣∣∣∣
ϕ=0

=−i
(

0 1

−1 0

)
= σ2. (4.22)

For the rotationsRz(ϕ) about thez-axis described by Eq. (4.1), the generator is given
by

−idRz(ϕ)/dϕ|ϕ=0= Sz =




0 −i 0

i 0 0

0 0 0


 , (4.23)

where the factori is inserted to makeSz Hermitian. The rotationRz(δϕ) through an infin-
itesimal angleδϕ may then be expanded to first order in the smallδϕ as

Rz(δϕ)= 13+ iδϕSz. (4.24)

A finite rotationR(ϕ) may be compounded of successive infinitesimal rotations

Rz(δϕ1+ δϕ2)= (1+ iδϕ1Sz)(1+ iδϕ2Sz). (4.25)

Let δϕ = ϕ/N for N rotations, withN→∞. Then

Rz(ϕ)= lim
N→∞

[
1+ (iϕ/N)Sz

]N = exp(iϕSz). (4.26)

This form identifiesSz as the generator of the groupRz, an abelian subgroup ofSO(3),
the group of rotations in three dimensions with determinant+1. Each 3× 3 matrixRz(ϕ)

is orthogonal, hence unitary, and trace(Sz)= 0, in accord with Eq. (4.11).
By differentiation of the coordinate rotations

Rx(ψ)=




1 0 0

0 cosψ sinψ

0 −sinψ cosψ


 , Ry(θ)=




cosθ 0 −sinθ

0 1 0

sinθ 0 cosθ


 , (4.27)

we get the generators

Sx =




0 0 0

0 0 −i
0 i 0


 , Sy =




0 0 i

0 0 0

−i 0 0


 (4.28)

of Rx(Ry), the subgroup of rotations about thex- (y-)axis.
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Rotation of Functions and Orbital Angular Momentum

In the foregoing discussion the group elements are matrices that rotate the coordinates.
Any physical system being described is held fixed. Now let us hold the coordinates fixed
and rotate a functionψ(x, y, z) relative to our fixed coordinates. WithR to rotate the
coordinates,

x′ =Rx, (4.29)

we defineR onψ by

Rψ(x, y, z)=ψ ′(x, y, z)≡ψ(x′). (4.30)

In words,R operates on the functionψ , creating anew function ψ ′ that is numerically
equal toψ(x′), wherex′ are the coordinates rotated byR. If R rotates the coordinates
counterclockwise, the effect ofR is to rotate the pattern of the functionψ clockwise.

Returning to Eqs. (4.30) and (4.1), consider an infinitesimal rotation again,ϕ → δϕ.
Then, usingRz Eq. (4.1), we obtain

Rz(δϕ)ψ(x, y, z)=ψ(x + yδϕ, y − xδϕ, z). (4.31)

The right side may be expanded to first order in the smallδϕ to give

Rz(δϕ)ψ(x, y, z) = ψ(x, y, z)− δϕ{x∂ψ/∂y − y∂ψ/∂x} +O(δϕ)2

= (1− iδϕLz)ψ(x, y, z), (4.32)

the differential expression in curly brackets being the orbital angular momentumiLz (Ex-
ercise 1.8.7). Since a rotation of firstϕ and thenδϕ about thez-axis is given by

Rz(ϕ + δϕ)ψ =Rz(δϕ)Rz(ϕ)ψ = (1− iδϕLz)Rz(ϕ)ψ, (4.33)

we have (as an operator equation)

dRz

dϕ
= lim

δϕ→0

Rz(ϕ + δϕ)−Rz(ϕ)

δϕ
=−iLzRz(ϕ). (4.34)

In this form Eq. (4.34) integrates immediately to

Rz(ϕ)= exp(−iϕLz). (4.35)

Note thatRz(ϕ) rotates functions (clockwise) relative to fixed coordinates and thatLz is
thez component of the orbital angular momentumL . The constant of integration is fixed
by the boundary conditionRz(0)= 1.

As suggested by Eq. (4.32),Lz is connected toSz by

Lz = (x, y, z)Sz



∂/∂x

∂/∂y

∂/∂z


=−i

(
x
∂

∂y
− y

∂

∂x

)
, (4.36)

soLx,Ly , andLz satisfy the same commutation relations,

[Li,Lj ] = iεijkLk, (4.37)

asSx,Sy , andSz and yield the same structure constantsiεijk of SO(3).
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SU(2) — SO(3) Homomorphism

Since unitary 2× 2 matrices transform complex two-dimensional vectors preserving their
norm, they represent the most general transformations of (a basis in the Hilbert space of)
spin 1

2 wave functions in nonrelativistic quantum mechanics. The basis states of this system
are conventionally chosen to be

|↑〉 =
(

1
0

)
, |↓〉 =

(
0
1

)
,

corresponding to spin12 up and down states, respectively. We can show that thespecial
unitary groupSU(2) of unitary 2× 2 matrices with determinant+1 has all three Pauli
matricesσi as generators (while the rotations of Eq. (4.3) form a one-dimensional abelian
subgroup). SoSU(2) is of order 3 and depends on three real continuous parametersξ, η, ζ ,
which are often called theCayley–Klein parameters. To construct its general element, we
start with the observation that orthogonal 2× 2 matrices are real unitary matrices, so they
form a subgroup ofSU(2). We also see that

(
eiα 0

0 e−iα

)

is unitary for real angleα with determinant+1. So these simple and manifestly unitary ma-
trices form another subgroup ofSU(2) from which we can obtain all elements ofSU(2),
that is, the general 2× 2 unitary matrix of determinant+1. For a two-component spin12
wave function of quantum mechanics this diagonal unitary matrix corresponds to multipli-
cation of the spin-up wave function with a phase factoreiα and the spin-down component
with the inverse phase factor. Using the real angleη instead ofϕ for the rotation matrix
and then multiplying by the diagonal unitary matrices, we construct a 2× 2 unitary matrix
that depends on three parameters and clearly is a more general element ofSU(2):

(
eiα 0

0 e−iα

)(
cosη sinη

−sinη cosη

)(
eiβ 0

0 e−iβ

)

=
(

eiα cosη eiα sinη

−e−iα sinη e−iα cosη

)(
eiβ 0

0 e−iβ

)

=
(

ei(α+β) cosη ei(α−β) sinη

−e−i(α−β) sinη e−i(α+β) cosη

)
.

Definingα+ β ≡ ξ,α− β ≡ ζ , we have in fact constructed the general element ofSU(2):

U(ξ, η, ζ )=
(

eiξ cosη eiζ sinη

−e−iζ sinη e−iξ cosη

)
=
(

a b

−b∗ a∗

)
. (4.38)

To see this, we write the generalSU(2) element asU =
(
a b
c d

)
with complex numbers

a, b, c, d so that det(U) = 1. Writing unitarity, U† = U−1, and using Eq. (3.50) for the
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inverse we obtain (
a∗ c∗

b∗ d∗

)
=
(

d −b
−c a

)
,

implying c=−b∗, d = a∗, as shown in Eq. (4.38). It is easy to check that the determinant
det(U)= 1 and thatU†U= 1=UU† hold.

To get the generators, we differentiate (and drop irrelevant overall factors):

−i∂U/∂ξ|ξ=0,η=0=
(

1 0

0 −1

)
= σ3, (4.39a)

−i∂U/∂η|η=0,ζ=0=
(

0 −i
i 0

)
= σ2. (4.39b)

To avoid a factor 1/sinη for η→ 0 upon differentiating with respect toζ , we use in-
stead the right-hand side of Eq. (4.38) forU for pure imaginaryb = iβ with β → 0, so
a =

√
1− β2 from |a|2 + |b|2 = a2+ β2 = 1. Differentiating such aU, we get the third

generator,

−i ∂

∂β

(√
1− β2 iβ

iβ
√

1− β2

)∣∣∣∣
β=0

=−i



− β√

1−β2
i

− i
β√

1−β2



∣∣∣∣
β=0

=
(

0 1

1 0

)
= σ1.

(4.39c)
The Pauli matrices are all traceless and Hermitian.

With the Pauli matrices as generators, the elementsU1,U2,U3 of SU(2) may be gener-
ated by

U1= exp(ia1σ1/2), U2= exp(ia2σ2/2), U3= exp(ia3σ3/2). (4.40)

The three parametersai are real. The extra factor 1/2 is present in the exponents to make
Si = σi/2 satisfy the same commutation relations,

[Si,Sj ] = iεijkSk, (4.41)

as the angular momentum in Eq. (4.37).
To connect and compare our results, Eq. (4.3) gives a rotation operator for rotat-

ing the Cartesian coordinates in the three-spaceR3. Using the angular momentum ma-
trix S3, we have as the corresponding rotation operator in two-dimensional (complex)
spaceRz(ϕ)= exp(iϕσ3/2). For rotating the two-component vector wave function (spinor)
or a spin 1/2 particle relative to fixed coordinates, the corresponding rotation operator is
Rz(ϕ)= exp(−iϕσ3/2) according to Eq. (4.35).

More generally, using in Eq. (4.40) the Euler identity, Eq. (3.170a), we obtain

Uj = cos

(
aj

2

)
+ iσj sin

(
aj

2

)
. (4.42)

Here the parameteraj appears as an angle, the coefficient of an angular momentum matrix-
like ϕ in Eq. (4.26). The selection of Pauli matrices corresponds to the Euler angle rotations
described in Section 3.3.
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FIGURE 4.2 Illustration of
M′ =UMU† in Eq. (4.43).

As just seen, the elements ofSU(2) describe rotations in a two-dimensional complex
space that leave|z1|2+|z2|2 invariant. The determinant is+1. There are three independent
real parameters. Our real orthogonal groupSO(3) clearly describes rotations in ordinary
three-dimensional space with the important characteristic of leavingx2+ y2+ z2 invari-
ant. Also, there are three independent real parameters. The rotation interpretations and the
equality of numbers of parameters suggest the existence of some correspondence between
the groupsSU(2) andSO(3). Here we develop this correspondence.

The operation ofSU(2) on a matrix is given by a unitary transformation, Eq. (4.5), with
R=U and Fig. 4.2:

M′ =UMU†. (4.43)

Taking M to be a 2× 2 matrix, we note that any 2× 2 matrix may be written as a linear
combination of the unit matrix and the three Pauli matrices of Section 3.4. LetM be the
zero-trace matrix,

M= xσ1+ yσ2+ zσ3=
(

z x − iy

x + iy −z

)
, (4.44)

the unit matrix not entering. Since the trace is invariant under a unitary similarity transfor-
mation (Exercise 3.3.9),M′ must have the same form,

M′ = x′σ1+ y′σ2+ z′σ3=
(

z′ x′ − iy′

x′ + iy′ −z′

)
. (4.45)

The determinant is also invariant under a unitary transformation (Exercise 3.3.10). There-
fore

−
(
x2+ y2+ z2)=−

(
x′2+ y′2+ z′2

)
, (4.46)

or x2+ y2+ z2 is invariant under this operation ofSU(2), just as withSO(3). Operations
of SU(2) on M must produce rotations of the coordinatesx, y, z appearing therein. This
suggests thatSU(2) andSO(3) may be isomorphic or at least homomorphic.
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We approach the problem of what this operation ofSU(2) corresponds to by considering
special cases. Returning to Eq. (4.38), leta = eiξ andb= 0, or

U3=
(
eiξ 0

0 e−iξ

)
. (4.47)

In anticipation of Eq. (4.51), thisU is given a subscript 3.
Carrying out a unitary similarity transformation, Eq. (4.43), on each of the three Pauli

σ ’s of SU(2), we have

U3σ1U†
3 =

(
eiξ 0

0 e−iξ

)(
0 1

1 0

)(
e−iξ 0

0 eiξ

)

=
(

0 e2iξ

e−2iξ 0

)
. (4.48)

We reexpress this result in terms of the Pauliσi , as in Eq. (4.44), to obtain

U3xσ1U†
3= xσ1 cos2ξ − xσ2 sin 2ξ. (4.49)

Similarly,

U3yσ2U†
3 = yσ1 sin 2ξ + yσ2 cos2ξ,

U3zσ3U†
3 = zσ3. (4.50)

From these double angle expressions we see that we should start with a
halfangle: ξ = α/2. Then, adding Eqs. (4.49) and (4.50) and comparing with Eqs. (4.44)
and (4.45), we obtain

x′ = x cosα + y sinα

y′ = −x sinα + y cosα (4.51)

z′ = z.

The 2× 2 unitary transformation usingU3(α) is equivalent to the rotation operatorR(α)

of Eq. (4.3).
The correspondence of

U2(β)=
(

cosβ/2 sinβ/2

−sinβ/2 cosβ/2

)
(4.52)

andRy(β) and of

U1(ϕ)=
(

cosϕ/2 i sinϕ/2

i sinϕ/2 cosϕ/2

)
(4.53)

andR1(ϕ) follow similarly. Note thatUk(ψ) has the general form

Uk(ψ)= 12 cosψ/2+ iσk sinψ/2, (4.54)

wherek = 1,2,3.
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The correspondence

U3(α)=
(
eiα/2 0

0 e−iα/2

)
↔




cosα sinα 0

−sinα cosα 0

0 0 1


=Rz(α) (4.55)

is not a simple one-to-one correspondence. Specifically, asα in Rz ranges from 0 to 2π ,
the parameter inU3, α/2, goes from 0 toπ . We find

Rz(α + 2π) = Rz(α)

U3(α + 2π) =
(
−eiα/2 0

0 −e−iα/2

)
=−U3(α). (4.56)

Thereforeboth U3(α) andU3(α + 2π) = −U3(α) correspond toRz(α). The correspon-
dence is 2 to 1, orSU(2) andSO(3) arehomomorphic. This establishment of the corre-
spondence between the representations ofSU(2) and those ofSO(3) means that the known
representations ofSU(2) automatically provide us with the representations ofSO(3).

Combining the various rotations, we find that a unitary transformation using

U(α,β, γ )=U3(γ )U2(β)U3(α) (4.57)

corresponds to the general Euler rotationRz(γ )Ry(β)Rz(α). By direct multiplication,

U(α,β, γ ) =
(
eiγ /2 0

0 e−iγ /2

)(
cosβ/2 sinβ/2

−sinβ/2 cosβ/2

)(
eiα/2 0

0 e−iα/2

)

=
(

ei(γ+α)/2 cosβ/2 ei(γ−α)/2 sinβ/2

−e−i(γ−α)/2 sinβ/2 e−i(γ+α)/2 cosβ/2

)
. (4.58)

This is our alternate general form, Eq. (4.38), with

ξ = (γ + α)/2, η= β/2, ζ = (γ − α)/2. (4.59)

Thus, from Eq. (4.58) we may identify the parameters of Eq. (4.38) as

a = ei(γ+α)/2 cosβ/2

b = ei(γ−α)/2 sinβ/2. (4.60)

SU(2)-Isospin and SU(3)-Flavor Symmetry

The application of group theory to “elementary” particles has been labeled by Wigner
the third stage of group theory and physics. The first stage was the search for the 32
crystallographic point groups and the 230 space groups giving crystal symmetries —
Section 4.7. The second stage was a search for representations such as ofSO(3) and
SU(2) — Section 4.2. Now in this stage, physicists are back to a search for groups.

In the 1930s to 1960s the study of strongly interacting particles of nuclear and high-
energy physics led to theSU(2) isospin group and theSU(3) flavor symmetry. In the 1930s,
after the neutron was discovered, Heisenberg proposed that the nuclear forces were charge
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Table 4.1 Baryons with Spin1
2 Even Parity

Mass (MeV) Y I I3

�− 1321.32 − 1
2

� −1 1
2

�0 1314.9 + 1
2

�− 1197.43 −1
� �0 1192.55 0 1 0

�+ 1189.37 +1
� � 1115.63 0 0 0

n 939.566 − 1
2

N 1 1
2

p 938.272 + 1
2

independent. The neutron mass differs from that of the proton by only 1.6%. If this tiny
mass difference is ignored, the neutron and proton may be considered as two charge (or
isospin) states of a doublet, called thenucleon. The isospinI hasz-projectionI3 = 1/2
for the proton andI3 = −1/2 for the neutron. Isospin has nothing to do with spin (the
particle’s intrinsic angular momentum), but the two-component isospin state obeys the
same mathematical relations as the spin 1/2 state. For the nucleon,I = τ/2 are the usual
Pauli matrices and the±1/2 isospin states are eigenvectors of the Pauli matrixτ3=

( 1 0
0 −1

)
.

Similarly, the three charge states of the pion (π+,π0,π−) form a triplet. The pion is the
lightest of all strongly interacting particles and is the carrier of the nuclear force at long
distances, much like the photon is that of the electromagnetic force. The strong interaction
treats alike members of these particle families, or multiplets, and conserves isospin. The
symmetry is theSU(2) isospin group.

By the 1960s particles produced as resonances by accelerators had proliferated. The
eight shown in Table 4.1 attracted particular attention.5 The relevant conserved quantum
numbers that are analogs and generalizations ofLz andL2 from SO(3) areI3 andI2 for
isospin andY for hypercharge. Particles may be grouped into charge or isospin multiplets.
Then the hypercharge may be taken as twice the average charge of the multiplet. For the
nucleon, that is, the neutron–proton doublet,Y = 2 · 1

2(0+ 1) = 1. The hypercharge and
isospin values are listed in Table 4.1 for baryons like the nucleon and its (approximately
degenerate) partners. They form an octet, as shown in Fig. 4.3, after which the corre-
sponding symmetry is called theeightfold way. In 1961 Gell-Mann, and independently
Ne’eman, suggested that the strong interaction should be (approximately) invariant under
a three-dimensional special unitary group,SU(3), that is, hasSU(3) flavor symmetry.

The choice ofSU(3) was based first on the two conserved and independent quantum
numbers,H1= I3 andH2= Y (that is, generators with[I3, Y ] = 0, not Casimir invariants;
see the summary in Section 4.3) that call for a group of rank 2. Second, the group had
to have an eight-dimensional representation to account for the nearly degenerate baryons
and four similar octets for the mesons. In a sense,SU(3) is the simplest generalization of
SU(2) isospin. Three of its generators are zero-trace Hermitian 3× 3 matrices that contain

5All masses are given in energy units, 1 MeV= 106 eV.
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FIGURE 4.3 Baryon octet weight
diagram forSU(3).

the 2× 2 isospin Pauli matricesτi in the upper left corner,

λi =



τi 0

0

0 0 0


 , i = 1,2,3. (4.61a)

Thus, theSU(2)-isospin group is a subgroup ofSU(3)-flavor with I3 = λ3/2. Four other
generators have the off-diagonal 1’s ofτ1, and−i, i of τ2 in all other possible locations to
form zero-trace Hermitian 3× 3 matrices,

λ4=




0 0 1

0 0 0

1 0 0


 , λ5=




0 0 −i
0 0 0

i 0 0


 ,

λ6=




0 0 0

0 0 1

0 1 0


 , λ7=




0 0 0

0 0 −i
0 i 0


 .

(4.61b)

The second diagonal generator has the two-dimensional unit matrix 12 in the upper left
corner, which makes it clearly independent of theSU(2)-isospin subgroup because of its
nonzero trace in that subspace, and−2 in the third diagonal place to make it traceless,

λ8=
1√
3




1 0 0

0 1 0

0 0 −2


 . (4.61c)
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FIGURE 4.4 Baryon mass splitting.

Altogether there are 32− 1= 8 generators forSU(3), which has order 8. From the com-
mutators of these generators the structure constants ofSU(3) can easily be obtained.

Returning to theSU(3) flavor symmetry, we imagine the Hamiltonian for our eight
baryons to be composed of three parts:

H =Hstrong+Hmedium+Helectromagnetic. (4.62)

The first part,Hstrong, has theSU(3) symmetry and leads to the eightfold degeneracy.
Introduction of the symmetry-breaking term,Hmedium, removes part of the degeneracy,
giving the four isospin multiplets(�−,�0), (�−,�0,�+),�, andN = (p,n) different
masses. These are still multiplets becauseHmedium hasSU(2)-isospin symmetry. Finally,
the presence of charge-dependent forces splits the isospin multiplets and removes the last
degeneracy. This imagined sequence is shown in Fig. 4.4.

The octet representation is not the simplestSU(3) representation. The simplest repre-
sentations are the triangular ones shown in Fig. 4.5, from which all others can be generated
by generalized angular momentum coupling (see Section 4.4 on Young tableaux). The
fundamental representation in Fig. 4.5a contains theu (up), d (down), ands (strange)
quarks, and Fig. 4.5b contains the corresponding antiquarks. Since the meson octets can
be obtained from the quark representations asqq̄, with 32 = 8+ 1 states, this suggests
that mesons contain quarks (and antiquarks) as their constituents (see Exercise 4.4.3). The
resulting quark model gives a successful description of hadronic spectroscopy. The reso-
lution of its problem with the Pauli exclusion principle eventually led to theSU(3)-color
gauge theory of thestrong interaction calledquantum chromodynamics(QCD).

To keep group theory and its very real accomplishment in proper perspective, we should
emphasize that group theory identifies and formalizes symmetries. It classifies (and some-
times predicts) particles. But aside from saying that one part of the Hamiltonian hasSU(2)
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FIGURE 4.5 (a) Fundamental representation ofSU(3), the weight diagram for
theu, d , s quarks; (b) weight diagram for the antiquarksū, d̄, s̄.

symmetry and another part hasSU(3) symmetry, group theory says nothing about the par-
ticle interaction. Remember that the statement that the atomic potential is spherically sym-
metric tells us nothing about the radial dependence of the potential or of the wave function.
In contrast, in a gauge theory the interaction is mediated by vector bosons (like the photon
in quantum electrodynamics) and uniquely determined by the gauge covariant derivative
(see Section 1.13).

Exercises

4.2.1 (i) Show that the Pauli matrices are the generators ofSU(2) without using the para-
meterization of the general unitary 2× 2 matrix in Eq. (4.38). (ii) Derive the eight
independent generatorsλi of SU(3) similarly. Normalize them so that tr(λiλj )= 2δij .
Then determine the structure constants ofSU(3).
Hint. Theλi are traceless and Hermitian 3× 3 matrices.
(iii) Construct the quadratic Casimir invariant ofSU(3).
Hint. Work by analogy withσ 2

1 + σ 2
2 + σ 2

3 of SU(2) or L2 of SO(3).

4.2.2 Prove that the general form of a 2× 2 unitary, unimodular matrix is

U=
(

a b

−b∗ a∗

)

with a∗a + b∗b= 1.

4.2.3 Determine threeSU(2) subgroups ofSU(3).

4.2.4 A translation operatorT (a) convertsψ(x) to ψ(x + a),

T (a)ψ(x)=ψ(x + a).
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In terms of the (quantum mechanical) linear momentum operatorpx =−id/dx, show
thatT (a)= exp(iapx), that is,px is the generator of translations.
Hint. Expandψ(x + a) as a Taylor series.

4.2.5 Consider the generalSU(2) element Eq. (4.38) to be built up of three Euler rotations:
(i) a rotation ofa/2 about thez-axis, (ii) a rotation ofb/2 about the newx-axis, and
(iii) a rotation ofc/2 about the newz-axis. (All rotations are counterclockwise.) Using
the Pauliσ generators, show that these rotation angles are determined by

a = ξ − ζ + π
2 = α+ π

2

b= 2η = β

c= ξ + ζ − π
2 = γ − π

2 .

Note. The anglesa andb here are not thea andb of Eq. (4.38).

4.2.6 Rotate a nonrelativistic wave functioñψ = (ψ↑,ψ↓) of spin 1/2 about thez-axis by
a small angledθ . Find the corresponding generator.

4.3 ORBITAL ANGULAR MOMENTUM

The classical concept of angular momentum,Lclass= r × p, is presented in Section 1.4
to introduce the cross product. Following the usual Schrödinger representation of quantum
mechanics, the classical linear momentump is replaced by the operator−i∇. The quantum
mechanical orbital angular momentumoperator becomes6

LQM =−ir ×∇. (4.63)

This is used repeatedly in Sections 1.8, 1.9, and 2.4 to illustrate vector differential oper-
ators. From Exercise 1.8.8 the angular momentum components satisfy the commutation
relations

[Li,Lj ] = iεijkLk. (4.64)

Theεijk is the Levi-Civita symbol of Section 2.9. A summation over the indexk is under-
stood.

The differential operator corresponding to the square of the angular momentum

L2= L · L = L2
x +L2

y +L2
z (4.65)

may be determined from

L · L = (r × p) · (r × p), (4.66)

which is the subject of Exercises 1.9.9 and 2.5.17(b). SinceL2 as a scalar product is in-
variant under rotations, that is, a rotational scalar, we expect[L2,Li] = 0, which can also
be verified directly.

Equation (4.64) presents the basic commutation relations of the components of the quan-
tum mechanical angular momentum. Indeed, within the framework of quantum mechanics
and group theory, these commutation relations define an angular momentum operator. We
shall use them now to construct the angular momentum eigenstates and find the eigenval-
ues. For the orbital angular momentum these are the spherical harmonics of Section 12.6.

6For simplicity,h̄ is set equal to 1. This means that the angular momentum is measured in units ofh̄.
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Ladder Operator Approach

Let us start with a general approach, where the angular momentumJ we consider may rep-
resent an orbital angular momentumL , a spinσ/2, or a total angular momentumL + σ/2,
etc. We assume that

1. J is an Hermitian operator whose components satisfy the commutation relations

[Ji, Jj ] = iεijkJk,
[
J2, Ji

]
= 0. (4.67)

OtherwiseJ is arbitrary. (See Exercise 4.3.l.)
2. |λM〉 is simultaneously a normalized eigenfunction (or eigenvector) ofJz with eigen-

valueM and an eigenfunction7 of J2,

Jz|λM〉 =M|λM〉, J2|λM〉 = λ|λM〉, 〈λM|λM〉 = 1. (4.68)

We shall show thatλ= J (J + 1) and then find other properties of the|λM〉. The treat-
ment will illustrate the generality and power of operator techniques, particularly the use of
ladder operators.8

The ladder operatorsare defined as

J+ = Jx + iJy, J− = Jx − iJy . (4.69)

In terms of these operatorsJ2 may be rewritten as

J2= 1
2(J+J− + J−J+)+ J 2

z . (4.70)

From the commutation relations, Eq. (4.67), we find

[Jz, J+] = +J+, [Jz, J−] = −J−, [J+, J−] = 2Jz. (4.71)

SinceJ+ commutes withJ2 (Exercise 4.3.1),

J2(J+|λM〉
)
= J+

(
J2|λM〉

)
= λ

(
J+|λM〉

)
. (4.72)

Therefore,J+|λM〉 is still an eigenfunction ofJ2 with eigenvalueλ, and similarly for
J−|λM〉. But from Eq. (4.71),

JzJ+ = J+(Jz + 1), (4.73)

or

Jz
(
J+|λM〉

)
= J+(Jz + 1)|λM〉 = (M + 1)J+|λM〉. (4.74)

7That |λM〉 can be an eigenfunction ofboth Jz andJ2 follows from [Jz,J2] = 0 in Eq. (4.67). ForSU(2), 〈λM|λM〉 is the
scalar product (of the bra and ket vector or spinors) in the bra-ket notation introduced in Section 3.1. ForSO(3), |λM〉 is a

functionY (θ,ϕ) and|λM ′〉 is a functionY ′(θ,ϕ) and the matrix element〈λM|λM ′〉 ≡
∫ 2π
ϕ=0

∫ π
θ=0Y

∗(θ,ϕ)Y ′(θ,ϕ)sinθ dθ dϕ
is their overlap. However, in our algebraic approach only the norm in Eq. (4.68) is used and matrix elements of the angular
momentum operators are reduced to the norm by means of the eigenvalue equation forJz, Eq. (4.68), and Eqs. (4.83) and (4.84).
8Ladder operators can be developed for other mathematical functions. Compare the next subsection, on other Lie groups, and
Section 13.1, for Hermite polynomials.
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Therefore,J+|λM〉 is still an eigenfunction ofJz but with eigenvalueM+1.J+ has raised
the eigenvalue by 1 and so is called araising operator. Similarly,J− lowers the eigenvalue
by 1 and is called alowering operator.

Taking expectation values and usingJ †
x = Jx, J

†
y = Jy , we get

〈λM|J2− J 2
z |λM〉 = 〈λM|J 2

x + J 2
y |λM〉 =

∣∣Jx |λM〉
∣∣2+

∣∣Jy |λM〉
∣∣2

and see thatλ −M2 ≥ 0, soM is bounded. LetJ be thelargest M . ThenJ+|λJ 〉 = 0,
which impliesJ−J+|λJ 〉 = 0. Hence, combining Eqs. (4.70) and (4.71) to get

J2= J−J+ + Jz(Jz + 1), (4.75)

we find from Eq. (4.75) that

0= J−J+|λJ 〉 =
(
J2− J 2

z − Jz
)
|λJ 〉 =

(
λ− J 2− J

)
|λJ 〉.

Therefore

λ= J (J + 1)≥ 0, (4.76)

with nonnegativeJ . We now relabel the states|λM〉 ≡ |JM〉. Similarly, let J ′ be the
smallestM . ThenJ−|JJ ′〉 = 0. From

J2= J+J− + Jz(Jz − 1), (4.77)

we see that

0= J+J−|JJ ′〉 =
(
J2+ Jz − J 2

z

)
|JJ ′〉 =

(
λ+ J ′ − J ′2

)
|JJ ′〉. (4.78)

Hence

λ= J (J + 1)= J ′(J ′ − 1)= (−J )(−J − 1).

SoJ ′ =−J , andM runs ininteger stepsfrom−J to+J ,

−J ≤M ≤ J. (4.79)

Starting from|JJ 〉 and applyingJ− repeatedly, we reach all other states|JM〉. Hence the
|JM〉 form an irreducible representation ofSO(3) orSU(2); M varies andJ is fixed.

Then using Eqs. (4.67), (4.75), and (4.77) we obtain

J−J+|JM〉 =
[
J (J + 1)−M(M + 1)

]
|JM〉 = (J −M)(J +M + 1)|JM〉,

J+J−|JM〉 =
[
J (J + 1)−M(M − 1)

]
|JM〉 = (J +M)(J −M + 1)|JM〉.

(4.80)

BecauseJ+ andJ− are Hermitian conjugates,9

J
†
+ = J−, J

†
− = J+, (4.81)

the eigenvalues in Eq. (4.80) must be positive or zero.10 Examples of Eq. (4.81) are pro-
vided by the matrices of Exercise 3.2.13 (spin 1/2), 3.2.15 (spin 1), and 3.2.18 (spin 3/2).

9The Hermitian conjugation or adjoint operation is defined for matrices in Section 3.5, and for operators in general in Sec-
tion 10.1.
10For an excellent discussion of adjoint operators and Hilbert space see A. Messiah,Quantum Mechanics. New York: Wiley
1961, Chapter 7.



264 Chapter 4 Group Theory

For the orbital angular momentum ladder operators,L+, andL−, explicit forms are given
in Exercises 2.5.14 and 12.6.7. You can now show (see also Exercise 12.7.2) that

〈JM|J−
(
J+|JM〉

)
=
(
J+|JM〉

)†
J+|JM〉. (4.82)

SinceJ+ raises the eigenvalueM to M + 1, we relabel the resultant eigenfunction
|JM + 1〉. The normalization is given by Eq. (4.80) as

J+|JM〉 =
√
(J −M)(J +M + 1)|JM + 1〉 =

√
J (J + 1)−M(M + 1)|JM + 1〉,

(4.83)
taking the positive square root and not introducing any phase factor. By the same argu-
ments,

J−|JM〉 =
√
(J +M)(J −M + 1)|JM − 1〉 =

√
(J (J + 1)−M(M − 1)|JM − 1〉.

(4.84)
ApplyingJ+ to Eq. (4.84), we obtain the second line of Eq. (4.80) and verify that Eq. (4.84)
is consistent with Eq. (4.83).

Finally, sinceM ranges from−J to+J in unit steps, 2J must be an integer;J is either
an integer or half of an odd integer. As seen later, ifJ is an orbital angular momentumL ,
the set|LM〉 for all M is a basis defining a representation ofSO(3) andL will then be
integral. In spherical polar coordinatesθ,ϕ, the functions|LM〉 become the spherical har-
monicsYM

L (θ,ϕ) of Section 12.6. The sets of|JM〉 states with half-integralJ define rep-
resentations ofSU(2) that are not representations ofSO(3); we getJ = 1/2,3/2,5/2, . . . .
Our angular momentum is quantized, essentially as a result of the commutation relations.
All these representations are irreducible, as an application of the raising and lowering op-
erators suggests.

Summary of Lie Groups and Lie Algebras

The general commutation relations, Eq. (4.14) in Section 4.2, for a classical Lie group
[SO(n) andSU(n) in particular] can be simplified to look more like Eq. (4.71) forSO(3)
andSU(2) in this section. Here we merely review and, as a rule, do not provide proofs for
various theorems that we explain.

First we choose linearly independent and mutually commuting generatorsHi which are
generalizations ofJz for SO(3) andSU(2). Let l be the maximum number of suchHi with

[Hi,Hk] = 0. (4.85)

Thenl is called therank of the Lie groupG or its Lie algebraG. The rank and dimension,
or order, of some Lie groups are given in Table 4.2. All other generatorsEα can be shown
to be raising and lowering operators with respect to all theHi , so

[Hi,Eα] = αiEα, i = 1,2, . . . , l. (4.86)

The set of so-calledroot vectors (α1, α2, . . . , αl) form theroot diagram of G.
When theHi commute, they can be simultaneously diagonalized (for symmetric (or

Hermitian) matrices see Chapter 3; for operators see Chapter 10). TheHi provide us with
a set of eigenvaluesm1,m2, . . . ,ml [projection or additive quantum numbers generalizing
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Table 4.2 Rank and Order of Unitary and Rotational
Groups

Lie algebra Al Bl Dl

Lie group SU(l + 1) SO(2l + 1) SO(2l)
Rank l l l

Order l(l + 2) l(2l + 1) l(2l − 1)

M of Jz in SO(3) andSU(2)]. The set of so-calledweight vectors(m1,m2, . . . ,ml) for
an irreducible representation (multiplet) form aweight diagram.

There arel invariant operatorsCi , called Casimir operators, that commute with all
generators and are generalizations ofJ2,

[Ci,Hj ] = 0, [Ci,Eα] = 0, i = 1,2, . . . , l. (4.87)

The first one,C1, is a quadratic function of the generators; the others are more complicated.
Since theCj commute with allHj , they can be simultaneously diagonalized with theHj .
Their eigenvaluesc1, c2, . . . , cl characterize irreducible representations and stay constant
while the weight vector varies over any particular irreducible representation. Thus the gen-
eral eigenfunction may be written as

∣∣(c1, c2, . . . , cl)m1,m2, . . . ,ml

〉
, (4.88)

generalizing the multiplet|JM〉 of SO(3) andSU(2). Their eigenvalue equations are

Hi

∣∣(c1, c2, . . . , cl)m1,m2, . . . ,ml

〉
=mi

∣∣(c1, c2, . . . , cl)m1,m2, . . . ,ml

〉
(4.89a)

Ci

∣∣(c1, c2, . . . , cl)m1,m2, . . . ,ml

〉
= ci

∣∣(c1, c2, . . . , cl)m1,m2, . . . ,ml

〉
. (4.89b)

We can now show thatEα|(c1, c2, . . . , cl)m1,m2, . . . ,ml〉 has the weight vector
(m1 + α1,m2 + α2, . . . ,ml + αl) using the commutation relations, Eq. (4.86), in con-
junction with Eqs. (4.89a) and (4.89b):

HiEα

∣∣(c1, c2, . . . , cl)m1,m2, . . . ,ml

〉

=
(
EαHi + [Hi,Eα]

)∣∣(c1, c2, . . . , cl)m1,m2, . . . ,ml

〉

= (mi + αi)Eα

∣∣(c1, c2, . . . , cl)m1,m2, . . . ,ml

〉
. (4.90)

Therefore

Eα

∣∣(c1, c2, . . . , cl)m1,m2, . . . ,ml

〉
∼
∣∣(c1, . . . , cl)m1+ α1, . . . ,ml + αl

〉
,

the generalization of Eqs. (4.83) and (4.84) fromSO(3). These changes of eigenvalues by
the operatorEα are called itsselection rulesin quantum mechanics. They are displayed in
the root diagram of a Lie algebra.

Examples of root diagrams are given in Fig. 4.6 forSU(2) andSU(3). If we attach the
roots denoted by arrows in Fig. 4.6b to a weight in Figs. 4.3 or 4.5a, b, we can reach any
other state (represented by a dot in the weight diagram).

HereSchur’s lemmaapplies: An operatorH that commutes with all group operators,
and therefore with all generatorsHi of a (classical) Lie groupG in particular, has as eigen-
vectors all states of a multiplet and is degenerate with the multiplet. As a consequence,
such an operator commutes with all Casimir invariants,[H,Ci] = 0.
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FIGURE 4.6 Root diagram for (a)SU(2) and
(b) SU(3).

The last result is clear because the Casimir invariants are constructed from the generators
and raising and lowering operators of the group. To prove the rest, letψ be an eigenvector,
Hψ = Eψ . Then, for any rotationR of G, we haveHRψ = ERψ , which says thatRψ

is an eigenstate with the same eigenvalueE along withψ . Since[H,Ci] = 0, all Casimir
invariants can be diagonalized simultaneously withH and an eigenstate ofH is an eigen-
state of all theCi . Since[Hi,Ci] = 0, the rotated eigenstatesRψ are eigenstates ofCi ,
along withψ belonging to the same multiplet characterized by the eigenvaluesci of Ci .

Finally, such an operatorH cannot induce transitions between different multiplets of the
group because

〈
(c′1, c

′
2, . . . , c

′
l)m

′
1,m

′
2, . . . ,m

′
l

∣∣H
∣∣(c1, c2, . . . , cl)m1,m2, . . . ,ml

〉
= 0.

Using[H,Cj ] = 0 (for anyj ) we have

0=
〈
(c′1, c

′
2, . . . , c

′
l)m

′
1,m

′
2, . . . ,m

′
l

∣∣[H,Cj ]
∣∣(c1, c2, . . . , cl)m1,m2, . . . ,ml

〉

= (cj − c′j )
〈
(c′1, c

′
2, . . . , c

′
l)m

′
1,m

′
2, . . . ,m

′
l

∣∣H
∣∣(c1, c2, . . . , cl)m1,m2, . . . ,ml

〉
.

If c′j 
= cj for somej , then the previous equation follows.

Exercises

4.3.1 Show that (a)[J+,J2] = 0, (b) [J−,J2] = 0.

4.3.2 Derive the root diagram ofSU(3) in Fig. 4.6b from the generatorsλi in Eq. (4.61).
Hint. Work out first theSU(2) case in Fig. 4.6a from the Pauli matrices.

4.4 ANGULAR MOMENTUM COUPLING

In many-body systems of classical mechanics, the total angular momentum is the sum
L =∑i L i of the individual orbital angular momenta. Any isolated particle has conserved
angular momentum. In quantum mechanics, conserved angular momentum arises when
particles move in a central potential, such as the Coulomb potential in atomic physics,
a shell model potential in nuclear physics, or a confinement potential of a quark model in
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particle physics. In the relativistic Dirac equation, orbital angular momentum is no longer
conserved, butJ= L +S is conserved, the total angular momentum of a particle consisting
of its orbital and intrinsic angular momentum, called spinS= σ/2, in units ofh̄.

It is readily shown that the sum of angular momentum operators obeys the same com-
mutation relations in Eq. (4.37) or (4.41) as the individual angular momentum operators,
provided those from different particles commute.

Clebsch–Gordan Coefficients: SU(2)–SO(3)

Clearly, combining two commuting angular momentaJi to form their sum

J= J1+ J2, [J1i, J2i] = 0, (4.91)

occurs often in applications, andJ satisfies the angular momentum commutation relations

[Jj , Jk] = [J1j + J2j , J1k + J2k] = [J1j , J1k] + [J2j , J2k] = iεjkl(J1l + J2l)= iεjklJl .

For a single particle with spin 1/2, for example, an electron or a quark, the total angular
momentum is a sum of orbital angular momentum and spin. For two spinless particles
their total orbital angular momentumL = L1+ L2. ForJ2 andJz of Eq. (4.91) to be both
diagonal,[J2, Jz] = 0 has to hold. To show this we use the obvious commutation relations
[Jiz,J2

j ] = 0, and

J2= J2
1+ J2

2+ 2J1 · J2= J2
1+ J2

2+ J1+J2− + J1−J2+ + 2J1zJ2z (4.91′)

in conjunction with Eq. (4.71), for bothJi , to obtain
[
J2, Jz

]
= [J1−J2+ + J1+J2−, J1z + J2z]
= [J1−, J1z]J2+ + J1−[J2+, J2z] + [J1+, J1z]J2− + J1+[J2−, J2z]
= J1−J2+ − J1−J2+ − J1+J2− + J1+J2− = 0.

Similarly [J2,J2
i ] = 0 is proved. Hence the eigenvalues ofJ2

i ,J
2, Jz can be used to label

the total angular momentum states|J1J2JM〉.
The product states|J1m1〉|J2m2〉 obviously satisfy the eigenvalue equations

Jz|J1m1〉|J2m2〉 = (J1z + J2z)|J1m1〉|J2m2〉 = (m1+m2)|J1m1〉|J2m2〉
=M|J1m1〉|J2m2〉, (4.92)

J2
i |J1m1〉|J2m2〉 = Ji(Ji + 1)|J1m1〉|J2m2〉,

but will not have diagonalJ2 except for the maximally stretched states withM =
±(J1+ J2) andJ = J1+ J2 (see Fig. 4.7a). To see this we use Eq. (4.91′) again in con-
junction with Eqs. (4.83) and (4.84) in

J2|J1m1〉J2m2〉 =
{
J1(J1+ 1)+ J2(J2+ 1)+ 2m1m2

}
|J1m1〉|J2m2〉

+
{
J1(J1+ 1)−m1(m1+ 1)

}1/2{
J2(J2+ 1)−m2(m2− 1)

}1/2

× |J1m1+ 1〉|J2m2− 1〉 +
{
J1(J1+ 1)−m1(m1− 1)

}1/2

×
{
J2(J2+ 1)−m2(m2+ 1)

}1/2|J1m1− 1〉|J2m2+ 1〉. (4.93)
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FIGURE 4.7 Coupling of two angular momenta:
(a) parallel stretched, (b) antiparallel, (c) general

case.

The last two terms in Eq. (4.93) vanish only whenm1= J1 andm2= J2 or m1=−J1 and
m2=−J2. In both casesJ = J1+ J2 follows from the first line of Eq. (4.93). In general,
therefore, we have to form appropriate linear combinations of product states

|J1J2JM〉 =
∑

m1,m2

C
(
J1J2J |m1m2M

)
|J1m1〉|J2m2〉, (4.94)

so thatJ2 has eigenvalueJ (J + 1). The quantitiesC(J1J2J |m1m2M) in Eq. (4.94) are
calledClebsch–Gordan coefficients. From Eq. (4.92) we see that they vanish unlessM =
m1+m2, reducing the double sum to a single sum. ApplyingJ± to |JM〉 shows that the
eigenvaluesM of Jz satisfy the usual inequalities−J ≤M ≤ J .

Clearly, the maximalJmax= J1+ J2 (see Fig. 4.7a). In this case Eq. (4.93) reduces to a
pure product state

|J1J2J = J1+ J2M = J1+ J2〉 = |J1J1〉|J2J2〉, (4.95a)

so the Clebsch–Gordan coefficient

C(J1J2J = J1+ J2|J1J2J1+ J2)= 1. (4.95b)

The minimalJ = J1− J2 (if J1 > J2, see Fig. 4.7b) andJ = J2− J1 for J2 > J1 follow if
we keep in mind that there are just as many product states as|JM〉 states; that is,

Jmax∑

J=Jmin

(2J + 1) = (Jmax− Jmin+ 1)(Jmax+ Jmin+ 1)

= (2J1+ 1)(2J2+ 1). (4.96)

This condition holds because the|J1J2JM〉 states merely rearrange all product states into
irreducible representations of total angular momentum. It is equivalent to thetriangle rule :

�(J1J2J )= 1, if |J1− J2| ≤ J ≤ J1+ J2;
�(J1J2J )= 0, else.

(4.97)
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This indicates that one complete multiplet of eachJ value fromJmin to Jmax accounts
for all the states and that all the|JM〉 states are necessarily orthogonal. In other words,
Eq. (4.94) defines a unitary transformation from the orthogonal basis set of products of
single-particle states|J1m1;J2m2〉 = |J1m1〉|J2m2〉 to the two-particle states|J1J2JM〉.
The Clebsch–Gordan coefficients are just the overlap matrix elements

C(J1J2J |m1m2M)≡ 〈J1J2JM|J1m1;J2m2〉. (4.98)

The explicit construction in what follows shows that they are all real. The states in
Eq. (4.94) are orthonormalized, provided that the constraints

∑

m1,m2, m1+m2=M
C(J1J2J |m1m2M)C(J1J2J

′|m1m2M
′〉

= 〈J1J2JM|J1J2J
′M ′〉 = δJJ ′δMM ′

(4.99a)

∑

J,M

C(J1J2J |m1m2M)C(J1J2J |m′1m′2M)

= 〈J1m1|J1m
′
1〉〈J2m2|J2m

′
2〉 = δm1m

′
1
δm2m

′
2

(4.99b)

hold.
Now we are ready to construct more directly the total angular momentum states starting

from |Jmax= J1+ J2 M = J1+ J2〉 in Eq. (4.95a) and using the lowering operatorJ− =
J1− + J2− repeatedly. In the first step we use Eq. (4.84) for

Ji−|JiJi〉 =
{
Ji(Ji + 1)− Ji(Ji − 1)

}1/2|JiJi − 1〉 = (2Ji)
1/2|JiJi − 1〉,

which we substitute into(J1− + J2−〉|J1J1)|J2J2〉. Normalizing the resulting state with
M = J1+ J2− 1 properly to 1, we obtain

|J1J2J1+ J2J1+ J2− 1〉 =
{
J1/(J1+ J2)

}1/2|J1J1− 1〉|J2J2〉

+
{
J2/(J1+ J2)

}1/2|J1J1〉|J2J2− 1〉. (4.100)

Equation (4.100) yields the Clebsch–Gordan coefficients

C(J1J2J1+ J2|J1− 1 J2 J1+ J2− 1) =
{
J1/(J1+ J2)

}1/2
,

C(J1J2J1+ J2|J1 J2− 1 J1+ J2− 1) =
{
J2/(J1+ J2)

}1/2
.

(4.101)

Then we applyJ− again and normalize the states obtained until we reach|J1J2 J1+J2M〉
with M = −(J1 + J2). The Clebsch–Gordan coefficientsC(J1J2J1 + J2|m1m2M) may
thus be calculated step by step, and they are all real.

The next step is to realize that the only other state withM = J1+J2−1 is the top of the
next lower tower of|J1+J2−1M〉 states. Since|J1+J2−1 J1+J2−1〉 is orthogonal to
|J1+ J2J1+ J2− 1〉 in Eq. (4.100), it must be the other linear combination with a relative
minus sign,

|J1+ J2− 1 J1+ J2− 1〉 = −
{
J2/(J1+ J2)

}1/2|J1J1− 1〉|J2J2〉

+
{
J1/(J1+ J2)

}1/2|J1J1〉|J2J2− 1〉, (4.102)

up to an overall sign.
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Hence we have determined the Clebsch–Gordan coefficients (forJ2≥ J1)

C(J1J2 J1+ J2− 1|J1− 1 J2 J1+ J2− 1)=−
{
J2/(J1+ J2)

}1/2
,

C(J1J2 J1+ J2− 1|J1 J2− 1 J1+ J2− 1)=
{
J1/(J1+ J2)

}1/2
.

(4.103)

Again we continue usingJ− until we reachM =−(J1+J2−1), and we keep normalizing
the resulting states|J1+ J2− 1M〉 of theJ = J1+ J2− 1 tower.

In order to get to the top of the next tower,|J1+ J2− 2M〉 with M = J1+ J2− 2, we
remember that we have already constructed two states with thatM . Both |J1 + J2J1 +
J2− 2〉 and|J1+ J2− 1 J1+ J2− 2〉 are known linear combinations of the three product
states|J1J1〉|J2J2 − 2〉, |J1J1 − 1〉 × |J2J2 − 1〉, and |J1J1 − 2〉|J2J2〉. The third linear
combination is easy to find from orthogonality to these two states, up to an overall phase,
which is chosen by theCondon–Shortley phase conventions11 so that the coefficient
C(J1J2 J1+J2−2|J1 J2−2J1+J2−2) of the last product state is positive for|J1J2 J1+
J2− 2 J1+ J2− 2〉. It is straightforward, though a bit tedious, to determine the rest of the
Clebsch–Gordan coefficients.

Numerous recursion relations can be derived from matrix elements of various angular
momentum operators, for which we refer to the literature.12

The symmetry properties of Clebsch–Gordan coefficients are best displayed in the more
symmetric Wigner’s 3j -symbols, which are tabulated:12

(
J1J2J3

m1m2m3

)
= (−1)J1−J2−m3

(2J3+ 1)1/2
C(J1J2J3|m1m2,−m3), (4.104a)

obeying the symmetry relations

(
J1J2J3

m1m2m3

)
= (−1)J1+J2+J3

(
JkJlJn

mkmlmn

)
(4.104b)

for (k, l, n) an odd permutation of(1,2,3). One of the most important places where
Clebsch–Gordan coefficients occur is in matrix elements of tensor operators, which are
governed by the Wigner–Eckart theorem discussed in the next section, on spherical ten-
sors. Another is coupling of operators or state vectors to total angular momentum, such
as spin-orbit coupling. Recoupling of operators and states in matrix elements leads to 6j -
and 9j -symbols.12 Clebsch–Gordan coefficients can and have been calculated for other
Lie groups, such asSU(3).

11E. U. Condon and G. H. Shortley,Theory of Atomic Spectra. Cambridge, UK: Cambridge University Press (1935).
12There is a rich literature on this subject, e.g., A. R. Edmonds,Angular Momentum in Quantum Mechanics. Princeton, NJ:
Princeton University Press (1957); M. E. Rose,Elementary Theory of Angular Momentum. New York: Wiley (1957); A. de-Shalit
and I. Talmi,Nuclear Shell Model. New York: Academic Press (1963); Dover (2005). Clebsch–Gordan coefficients are tabulated
in M. Rotenberg, R. Bivins, N. Metropolis, and J. K. Wooten, Jr.,The 3j- and 6j-Symbols. Cambridge, MA: Massachusetts
Institute of Technology Press (1959).
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Spherical Tensors

In Chapter 2 the properties of Cartesian tensors are defined using the group of nonsin-
gular general linear transformations, which contains the three-dimensional rotations as a
subgroup. A tensor of a given rank that is irreducible with respect to the full group may
well become reducible for the rotation groupSO(3). To explain this point, consider the
second-rank tensor with componentsTjk = xjyk for j, k = 1,2,3. It contains the symmet-
ric tensorSjk = (xjyk + xkyj )/2 and the antisymmetric tensorAjk = (xjyk − xkyj )/2, so
Tjk = Sjk +Ajk . This reducesTjk in SO(3). However, under rotations the scalar product
x · y is invariant and is therefore irreducible inSO(3). Thus,Sjk can be reduced by sub-
traction of the multiple ofx · y that makes it traceless. This leads to theSO(3)-irreducible
tensor

S′jk = 1
2(xjyk + xkyj )− 1

3x · yδjk.

Tensors of higher rank may be treated similarly. When we form tensors from products of
the components of the coordinate vectorr then, in polar coordinates that are tailored to
SO(3) symmetry, we end up with the spherical harmonics of Chapter 12.

The form of the ladder operators forSO(3) in Section 4.3 leads us to introduce the
spherical components(note the different normalization and signs, though, prescribed by
theYlm) of a vectorA:

A+1=− 1√
2
(Ax + iAy), A−1= 1√

2
(Ax − iAy), A0=Az. (4.105)

Then we have for the coordinate vectorr in polar coordinates,

r+1=− 1√
2
r sinθeiϕ = r

√
4π
3 Y11, r−1= 1√

2
r sinθe−iϕ = r

√
4π
3 Y1,−1,

r0= r

√
4π
3 Y10,

(4.106)

whereYlm(θ,ϕ) are the spherical harmonics of Chapter 12. Again, the sphericaljm com-
ponents of tensorsTjm of higher rankj may be introduced similarly.

An irreduciblespherical tensor operatorTjm of rank j has 2j + 1 components, just
as for spherical harmonics, andm runs from−j to +j . Under a rotationR(α), whereα
stands for the Euler angles, theYlm transform as

Ylm(r̂ ′)=
∑

m′
Ylm′(r̂)D

l
m′m(R), (4.107a)

wherer̂ ′ = (θ ′, ϕ′) are obtained from̂r = (θ,ϕ) by the rotationR and are the angles of the
same point in the rotated frame, and

DJ
m′m(α,β, γ )= 〈Jm|exp(iαJz)exp(iβJy)exp(iγ Jz)|Jm′〉

are the rotation matrices. So, for the operatorTjm, we define

RTjmR−1=
∑

m′
Tjm′D

j

m′m(α). (4.107b)
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For an infinitesimal rotation (see Eq. (4.20) in Section 4.2 on generators) the left side of
Eq. (4.107b) simplifies to a commutator and the right side to the matrix elements ofJ, the
infinitesimal generator of the rotationR:

[Jn, Tjm] =
∑

m′
Tjm′〈jm′|Jn|jm〉. (4.108)

If we substitute Eqs. (4.83) and (4.84) for the matrix elements ofJm we obtain the alterna-
tive transformation laws of a tensor operator,

[J0, Tjm] =mTjm, [J±, Tjm] = Tjm±1
{
(j −m)(j ±m+ 1)

}1/2
. (4.109)

We can use the Clebsch–Gordan coefficients of the previous subsection to couple two
tensors of given rank to another rank. An example is the cross or vector product of two
vectorsa andb from Chapter 1. Let us write both vectors in spherical components,am and
bm. Then we verify that the tensorCm of rank 1 defined as

Cm ≡
∑

m1m2

C(111|m1m2m)am1bm2 =
i√
2
(a× b)m. (4.110)

SinceCm is a spherical tensor of rank 1 that is linear in the components ofa andb, it must
be proportional to the cross product,Cm =N(a× b)m. The constantN can be determined
from a special case,a= x̂,b= ŷ, essentially writinĝx× ŷ= ẑ in spherical components as
follows. Using

(ẑ)0= 1; (x̂)1=−1/
√

2, (x̂)−1= 1/
√

2;
(ŷ)1=−i/

√
2, (ŷ)−1=−i/

√
2,

Eq. (4.110) form= 0 becomes

C(111|1,−1,0)
[
(x̂)1(ŷ)−1− (x̂)−1(ŷ)1

]
=N

(
(ẑ)0

)
=N

= 1√
2

[
− 1√

2

(
− i√

2

)
− 1√

2

(
− i√

2

)]
= i√

2
,

where we have usedC(111|101) = 1√
2

from Eq. (4.103) forJ1 = 1= J2, which implies

C(111|1,−1,0)= 1√
2

using Eqs. (4.104a,b):

(
1 1 1

1 0 −1

)
=− 1√

3
C(111|101)=−1

6
=−

(
1 1 1

1 −1 0

)
=− 1√

3
C(111|1,−1,0).

A bit simpler is the usual scalar product of two vectors in Chapter 1, in whicha andb
are coupled to zero angular momentum:

a · b≡−(ab)0
√

3≡−
√

3
∑

m

C(110|m,−m,0)amb−m. (4.111)

Again, the rank zero of our tensor product impliesa · b = n(ab)0. The constantn can
be determined from a special case, essentially writingẑ2 = 1 in spherical components:
ẑ2= 1= nC(110|000)=− n√

3
.
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Another often-used application of tensors is therecoupling that involves6j-symbolsfor
three operators and 9j for four operators.12 An example is the following scalar product,
for which it can be shown12 that

σ 1 · rσ 2 · r =
1

3
r2σ 1 · σ 2+ (σ 1σ 2)2 · (rr )2, (4.112)

but which can also be rearranged by elementary means. Here the tensor operators are de-
fined as

(σ 1σ 2)2m =
∑

m1m2

C(112|m1m2m)σ1m1σ2m2, (4.113)

(rr )2m =
∑

m

C(112|m1m2m)rm1rm2 =
√

8π

15
r2Y2m(r̂), (4.114)

and the scalar product of tensors of rank 2 as

(σ 1σ 2)2 · (rr )2=
∑

m

(−1)m(σ 1σ 2)2m(rr )2,−m =
√

5
(
(σ 1σ 2)2(rr )2

)
0. (4.115)

One of the most important applications of spherical tensor operators is theWigner–
Eckart theorem. It says that a matrix element of a spherical tensor operatorTkm of rankk
between states of angular momentumj andj ′ factorizes into a Clebsch–Gordan coefficient
and a so-calledreduced matrix element, denoted by double bars, that no longer has any
dependence on the projection quantum numbersm,m′, n:

〈j ′m′|Tkn|jm〉 = C(kjj ′|nmm′)(−1)k−j+j
′〈j ′‖Tk‖j 〉/

√
(2j ′ + 1). (4.116)

In other words, such a matrix element factors into a dynamic part, the reduced matrix
element, and a geometric part, the Clebsch–Gordan coefficient that contains the rotational
properties (expressed by the projection quantum numbers) from theSO(3) invariance. To
see this we coupleTkn with the initial state to total angular momentumj ′:

|j ′m′〉0≡
∑

nm

C(kjj ′|nmm′)Tkn|jm〉. (4.117)

Under rotations the state|j ′m′〉0 transforms just like|j ′m′〉. Thus, the overlap matrix ele-
ment〈j ′m′|j ′m′〉0 is a rotational scalar that has nom′ dependence, so we can average over
the projections,

〈JM|j ′m′〉0=
δJj ′δMm′

2j ′ + 1

∑

µ

〈j ′µ|j ′µ〉0. (4.118)

Next we substitute our definition, Eq. (4.117), into Eq. (4.118) and invert the relation
Eq. (4.117) using orthogonality, Eq. (4.99b), to find that

〈JM|Tkn|jm〉 =
∑

j ′m′
C(kjj ′|nmm′)

δJj ′δMm′

2J + 1

∑

µ

〈Jµ|Jµ〉0, (4.119)

which proves the Wigner–Eckart theorem, Eq. (4.116).13

13The extra factor(−1)k−j+j
′
/
√
(2j ′ + 1) in Eq. (4.116) is just a convention that varies in the literature.
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As an application, we can write the Pauli matrix elements in terms of Clebsch–Gordan
coefficients. We apply the Wigner–Eckart theorem to

〈1
2γ
∣∣σα
∣∣1

2β
〉
= (σα)γβ =− 1√

2
C
(
11

2
1
2

∣∣αβγ
)〈1

2

∥∥σ
∥∥1

2

〉
. (4.120)

Since〈1
2

1
2|σ0|12 1

2〉 = 1 with σ0= σ3 andC(11
2

1
2 | 01

2
1
2)=−1/

√
3, we find

〈1
2

∥∥σ
∥∥1

2

〉
=
√

6, (4.121)

which, substituted into Eq. (4.120), yields

(σα)γβ =−
√

3C
(
11

2
1
2

∣∣αβγ
)
. (4.122)

Note that theα =±1,0 denote the spherical components of the Pauli matrices.

Young Tableaux for SU(n)

Young tableaux (YT) provide a powerful and elegant method for decomposing products
of SU(n) group representations into sums of irreducible representations. The YT provide
the dimensions and symmetry types of the irreducible representations in this so-called
Clebsch–Gordan series, though not the Clebsch–Gordan coefficients by which the prod-
uct states are coupled to the quantum numbers of each irreducible representation of the
series (see Eq. (4.94)).

Products of representations correspond to multiparticle states. In this context, permuta-
tions of particles are important when we deal with several identical particles. Permutations
of n identical objects form thesymmetric group Sn. A close connection between irre-
ducible representations ofSn, which are the YT, and those ofSU(n) is provided by this
theorem: EveryN -particle state ofSn that is made up of single-particle states of the fun-
damentaln-dimensionalSU(n) multiplet belongs to an irreducibleSU(n) representation.
A proof is in Chapter 22 of Wybourne.14

For SU(2) the fundamental representation is a box that stands for the spin+1
2 (up) and

−1
2 (down) states and has dimension 2. ForSU(3) the box comprises the three quark states

in the triangle of Fig. 4.5a; it has dimension 3.
An array of boxes shown in Fig. 4.8 withλ1 boxes in the first row,λ2 boxes in the

second row,. . . , andλn−1 boxes in the last row is called a Young tableau (YT), denoted
by [λ1, . . . , λn−1], and represents an irreducible representation ofSU(n) if and only if

λ1≥ λ2≥ · · · ≥ λn−1. (4.123)

Boxes in the same row are symmetric representations; those in the same column are anti-
symmetric. A YT consisting of one row is totally symmetric. A YT consisting of a single
column is totally antisymmetric.

There are at mostn− 1 rows forSU(n) YT because a column ofn boxes is the totally
antisymmetric (Slater determinant of single-particle states) singlet representation that
may be struck from the YT.

An array ofN boxes is anN -particle state whose boxes may be labeled by positive
integers so that the (particle labels or) numbers in one row of the YT do not decrease from

14B. G. Wybourne,Classical Groups for Physicists. New York: Wiley (1974).
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FIGURE 4.8 Young tableau (YT) forSU(n).

left to right and those in any one column increase from top to bottom. In contrast to the
possible repetitions of row numbers, the numbers in any column must be different because
of the antisymmetry of these states.

The product of a YT with a single box,[1], is the sum of YT formed when the box is
put at the end of each row of the YT, provided the resulting YT is legitimate, that is, obeys
Eq. (4.123). ForSU(2) the product of two boxes, spin 1/2 representations of dimension 2,
generates

[1] ⊗ [1] = [2] ⊕ [1,1], (4.124)

the symmetric spin 1 representation of dimension 3 and the antisymmetric singlet of di-
mension 1 mentioned earlier.

The column ofn− 1 boxes is the conjugate representation of the fundamental represen-
tation; its product with a single box contains the column ofn boxes, which is the singlet.
For SU(3) the conjugate representation of the single box,[1] or fundamental quark repre-
sentation, is the inverted triangle in Fig. 4.5b,[1,1], which represents the three antiquarks
ū, d̄, s̄, obviously of dimension 3 as well.

The dimension of a YT is given by the ratio

dimYT= N

D
. (4.125)

The numeratorN is obtained by writing ann in all boxes of the YT along the diagonal,
(n+1) in all boxes immediately above the diagonal,(n−1) immediately below the diago-
nal, etc.N is the product of all the numbers in the YT. An example is shown in Fig. 4.9a for
the octet representation ofSU(3), whereN = 2 · 3 · 4= 24. There is a closed formula that
is equivalent to Eq. (4.125).15 The denominatorD is the product of allhooks.16 A hook is
drawn through each box of the YT by starting a horizontal line from the right to the box in
question and then continuing it vertically out of the YT. The number of boxes encountered
by the hook-line is the hook-number of the box.D is the product of all hook-numbers of

15See, for example, M. Hamermesh,Group Theory and Its Application to Physical Problems. Reading, MA: Addison-Wesley
(1962).
16F. Close,Introduction to Quarks and Partons. New York: Academic Press (1979).
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(a)

(b)

FIGURE 4.9 Illustration
of (a)N and (b)D in

Eq. (4.125) for the octet
Young tableau ofSU(3).

the YT. An example is shown in Fig. 4.9b for the octet ofSU(3), whose hook-number is
D = 1 · 3 · 1= 3. Hence the dimension of theSU(3) octet is 24/3= 8, whence its name.

Now we can calculate the dimensions of the YT in Eq. (4.124). ForSU(2) they are
2× 2= 3+ 1= 4. ForSU(3) they are 3· 3= 3 · 4/(1 · 2)+ 3 · 2/(2 · 1)= 6+ 3= 9. For
the product of the quark times antiquark YT ofSU(3) we get

[1,1] ⊗ [1] = [2,1] ⊕ [1,1,1], (4.126)

that is, octet and singlet, which are precisely the meson multiplets considered in the sub-
section on the eightfold way, theSU(3) flavor symmetry, which suggest mesons are bound
states of a quark and an antiquark,qq̄ configurations. For the product of three quarks we
get

(
[1] ⊗ [1]

)
⊗ [1] =

(
[2] ⊕ [1,1]

)
⊗ [1] = [3] ⊕ 2[2,1] ⊕ [1,1,1], (4.127)

that is, decuplet, octet, and singlet, which are the observed multiplets for the baryons,
which suggests they are bound states of three quarks,q3 configurations.

As we have seen, YT describe the decomposition of a product ofSU(n) irreducible repre-
sentations into irreducible representations ofSU(n), which is called the Clebsch–Gordan
series, while the Clebsch–Gordan coefficients considered earlier allow construction of the
individual states in this series.
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Exercises

4.4.1 Derive recursion relations for Clebsch–Gordan coefficients. Use them to calculate
C(11J |m1m2M) for J = 0,1,2.
Hint. Use the known matrix elements ofJ+ = J1++J2+, Ji+, andJ2= (J1+J2)

2, etc.

4.4.2 Show that(Ylχ)JM =∑
C(l 1

2J |mlmsM)Ylml
χms , whereχ±1/2 are the spin up and

down eigenfunctions ofσ3= σz, transforms like a spherical tensor of rankJ .

4.4.3 When the spin of quarks is taken into account, theSU(3) flavor symmetry is replaced by
the SU(6) symmetry. Why? Obtain the Young tableau for the antiquark configuration
q̄. Then decompose the productqq̄. WhichSU(3) representations are contained in the
nontrivialSU(6) representation for mesons?
Hint. Determine the dimensions of all YT.

4.4.4 For l = 1, Eq. (4.107a) becomes

Ym
1 (θ ′, ϕ′)=

1∑

m′=−1

D1
m′m(α,β, γ )Y

m′
1 (θ,ϕ).

Rewrite these spherical harmonics in Cartesian form. Show that the resulting Cartesian
coordinate equations are equivalent to the Euler rotation matrixA(α,β, γ ), Eq. (3.94),
rotating the coordinates.

4.4.5 Assuming thatDj (α,β, γ ) is unitary, show that

l∑

m=−l
Ym∗
l (θ1, ϕ1)Y

m
l (θ2, ϕ2)

is a scalar quantity (invariant under rotations). This is a spherical tensor analog of a
scalar product of vectors.

4.4.6 (a) Show that theα andγ dependence ofDj (α,β, γ ) may be factored out such that

Dj (α,β, γ )= Aj (α)dj (β)Cj (γ ).

(b) Show thatAj (α) andCj (γ ) are diagonal. Find the explicit forms.
(c) Show thatdj (β)=Dj (0, β,0).

4.4.7 The angular momentum–exponential form of the Euler angle rotation operators is

R = Rz′′(γ )Ry′(β)Rz(α)

= exp(−iγ Jz′′)exp(−iβJy′)exp(−iαJz).
Show that in terms of the original axes

R= exp(iαJz)exp(−iβJy)exp(−iγ Jz).
Hint. The R operators transform as matrices. The rotation about they′-axis (second
Euler rotation) may be referred to the originaly-axis by

exp(−iβJy′)= exp(−iαJz)exp(−iβJy)exp(iαJz).
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4.4.8 Using the Wigner–Eckart theorem, prove the decomposition theorem for a spherical
vector operator〈j ′m′|T1m|jm〉 = 〈jm′|J·T1|jm〉

j (j+1) δjj ′ .

4.4.9 Using the Wigner–Eckart theorem, prove the factorization
〈j ′m′|JMJ · T1|jm〉 = 〈jm′|JM |jm〉δj ′j 〈jm|J · T1|jm〉.

4.5 HOMOGENEOUS LORENTZ GROUP

Generalizing the approach to vectors of Section 1.2, in special relativity we demand that
our physical laws be covariant17 under

a. space and time translations,
b. rotations in real, three-dimensional space, and
c. Lorentz transformations.

The demand for covariance under translations is based on the homogeneity of space and
time. Covariance under rotations is an assertion of the isotropy of space. The requirement
of Lorentz covariance follows from special relativity. All three of these transformations
together form the inhomogeneous Lorentz group or the Poincaré group. When we exclude
translations, the space rotations and the Lorentz transformations together form a group —
the homogeneous Lorentz group.

We first generate a subgroup, the Lorentz transformations in which the relative velocity
v is along thex = x1-axis. The generator may be determined by considering space–time
reference frames moving with a relative velocityδv, an infinitesimal.18 The relations are
similar to those for rotations in real space, Sections 1.2, 2.6, and 3.3, except that here the
angle of rotation is pure imaginary (compare Section 4.6).

Lorentz transformations are linear not only in the space coordinatesxi but in the timet
as well. They originate from Maxwell’s equations of electrodynamics, which are invariant
under Lorentz transformations, as we shall see later. Lorentz transformations leave the
quadratic formc2t2 − x2

1 − x2
2 − x2

3 = x2
0 − x2

1 − x2
2 − x2

3 invariant, wherex0 = ct . We
see this if we switch on a light source at the origin of the coordinate system. At timet

light has traveled the distancect =
√∑

x2
i , soc2t2− x2

1 − x2
2 − x2

3 = 0. Special relativity
requires that in all (inertial) frames that move with velocityv ≤ c in any direction relative
to thexi -system and have the same origin at timet = 0, c2t ′2− x′21 − x′22 − x′23 = 0 holds
also. Four-dimensional space–time with the metricx ·x = x2= x2

0−x2
1−x2

2−x2
3 is called

Minkowski space, with the scalar product of two four-vectors defined asa ·b= a0b0−a·b.
Using the metric tensor

(gµν)=
(
gµν

)
=




1 0 0 0

0 −1 0 0

0 0 −1 0

0 0 0 −1




(4.128)

17To be covariant means to have the same form in different coordinate systems so that there is no preferred reference system
(compare Sections 1.2 and 2.6).
18This derivation, with a slightly different metric, appears in an article by J. L. Strecker,Am. J. Phys.35: 12 (1967).
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we can raise and lower the indices of a four-vector, such as the coordinatesxµ = (x0,x),
so thatxµ = gµνx

ν = (x0,−x) andxµgµνxν = x2
0 − x2, Einstein’s summation convention

being understood. For the gradient,∂µ = (∂/∂x0,−∇)= ∂/∂xµ and∂µ = (∂/∂x0,∇), so
∂2= ∂µ∂µ = (∂/∂x0)

2−∇2 is a Lorentz scalar, just like the metricx2= x2
0 − x2.

Forv≪ c, in the nonrelativistic limit, a Lorentz transformation must be Galilean. Hence,
to derive the form of a Lorentz transformation along thex1-axis, we start with a Galilean
transformation for infinitesimal relative velocityδv:

x′1= x1− δvt = x1− x0δβ. (4.129)

Here,β = v/c. By symmetry we also write

x′0= x0+ aδβx1, (4.129′)

with the parametera chosen so thatx2
0 − x2

1 is invariant,

x′20 − x′21 = x2
0 − x2

1. (4.130)

Remember,xµ = (x0,x) is the prototype four-dimensional vector in Minkowski space.
Thus Eq. (4.130) is simply a statement of the invariance of the square of the magnitude of
the “distance” vector under Lorentz transformation in Minkowski space. Here is where the
special relativity is brought into our transformation. Squaring and subtracting Eqs. (4.129)
and (4.129′) and discarding terms of order(δβ)2, we finda =−1. Equations (4.129) and
(4.129′) may be combined as a matrix equation,

(
x′0

x′1

)
= (12− δβσ1)

(
x0

x1

)
; (4.131)

σ1 happens to be the Pauli matrix,σ1, and the parameterδβ represents an infinitesimal
change. Using the same techniques as in Section 4.2, we repeat the transformationN times
to develop a finite transformation with the velocity parameterρ =Nδβ. Then

(
x′0

x′1

)
=
(

12−
ρσ1

N

)N
(
x0

x1

)
. (4.132)

In the limit asN→∞,

lim
N→∞

(
12−

ρσ1

N

)N

= exp(−ρσ1). (4.133)

As in Section 4.2, the exponential is interpreted by a Maclaurin expansion,

exp(−ρσ1)= 12− ρσ1+
1

2! (ρσ1)
2− 1

3! (ρσ1)
3+ · · · . (4.134)

Noting that(σ1)
2= 12,

exp(−ρσ1)= 12 coshρ − σ1 sinhρ. (4.135)

Hence our finite Lorentz transformation is
(
x′0

x′1

)
=
(

coshρ −sinhρ

−sinhρ coshρ

)(
x0

x1

)
. (4.136)
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σ1 has generated the representations of this pure Lorentz transformation. The quantities
coshρ and sinhρ may be identified by considering the origin of the primed coordinate
system,x′1= 0, orx1= vt . Substituting into Eq. (4.136), we have

0= x1 coshρ − x0 sinhρ. (4.137)

With x1= vt andx0= ct ,

tanhρ = β = v

c
.

Note that therapidity ρ 
= v/c, except in the limit asv→ 0. The rapidity is the additive
parameter for pure Lorentz transformations (“boosts”) along the same axis that corresponds
to angles for rotations about the same axis. Using 1− tanh2ρ = (cosh2ρ)−1,

coshρ =
(
1− β2)−1/2≡ γ, sinhρ = βγ. (4.138)

The group of Lorentz transformations is not compact, because the limit of a sequence of
rapidities going to infinity is no longer an element of the group.

The preceding special case of the velocity parallel to one space axis is easy, but it illus-
trates the infinitesimal velocity-exponentiation-generator technique. Now, this exact tech-
nique may be applied to derive the Lorentz transformation for the relative velocityv not
parallel to any space axis. The matrices given by Eq. (4.136) for the case ofv= x̂vx form
a subgroup. The matrices in the general case do not. The product of two Lorentz transfor-
mation matricesL(v1) andL(v2) yields a third Lorentz matrix,L(v3), if the two velocities
v1 andv2 are parallel. The resultant velocity,v3, is related tov1 andv2 by the Einstein
velocity addition law, Exercise 4.5.3. Ifv1 andv2 are not parallel, no such simple relation
exists. Specifically, consider three reference framesS,S′, andS′′, with S andS′ related by
L(v1) andS′ andS′′ related byL(v2). If the velocity ofS′′ relative to the original systemS
is v3, S′′ is not obtained fromS by L(v3)= L(v2)L(v1). Rather, we find that

L(v3)=RL(v2)L(v1), (4.139)

whereR is a 3× 3 space rotation matrix embedded in our four-dimensional space–time.
With v1 andv2 not parallel, the final system,S′′, is rotated relative toS. This rotation
is the origin of the Thomas precession involved in spin-orbit coupling terms in atomic
and nuclear physics. Because of its presence, the pure Lorentz transformationsL(v) by
themselves do not form a group.

Kinematics and Dynamics in Minkowski Space–Time

We have seen that the propagation of light determines the metric

r2− c2t2= 0= r ′2− c2t ′2,

wherexµ = (ct, r) is the coordinate four-vector. For a particle moving with velocityv, the
Lorentz invariant infinitesimal version

c dτ ≡
√
dxµ dxµ =

√
c2dt2− dr2= dt

√
c2− v2

defines the invariant proper timeτ on its track. Because of time dilation in moving frames,
a proper-time clock rides with the particle (in its rest frame) and runs at the slowest possible
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rate compared to any other inertial frame (of an observer, for example). The four-velocity
of the particle can now be defined properly as

dxµ

dτ
= uµ =

(
c√

c2− v2
,

v√
c2− v2

)
,

sou2= 1, and the four-momentumpµ = cmuµ = (E
c
,p) yields Einstein’s famous energy

relation

E = mc2
√

1− v2/c2
=mc2+ m

2
v2± · · · .

A consequence ofu2 = 1 and its physical significance is that the particle is on its mass
shellp2=m2c2.

Now we formulate Newton’s equation for asingle particleof massm in special relativity
as dpµ

dτ
= Kµ, with Kµ denoting the force four-vector, so its vector part of the equation

coincides with the usual form. Forµ= 1,2,3 we usedτ = dt
√

1− v2/c2 and find

1√
1− v2/c2

dp
dt
= F√

1− v2/c2
= K ,

determiningK in terms of the usual forceF. We need to findK0. We proceed by analogy
with the derivation of energy conservation, multiplying the force equation into the four-
velocity

muν
duν

dτ
= m

2

du2

dτ
= 0,

becauseu2= 1= const. The other side of Newton’s equation yields

0= 1

c
u ·K = K0

√
1− v2/c2

− F · v/c
√

1− v2/c22
,

soK0= F·v/c√
1−v2/c2

is related to the rate of work done by the force on the particle.

Now we turn to two-body collisions, in which energy–momentum conservation takes
the formp1+ p2= p3+ p4, wherepµ

i are the particle four-momenta. Because the scalar
product of any four-vector with itself is an invariant under Lorentz transformations, it is
convenient to define the Lorentz invariant energy squareds = (p1 + p2)

2 = P 2, where
Pµ is the total four-momentum, and to use units where the velocity of lightc = 1. The
laboratory system (lab) is defined as the rest frame of the particle with four-momentum
p
µ
2 = (m2,0) and the center of momentum frame (cms) by the total four-momentumPµ =

(E1+E2,0). When the incident lab energyEL
1 is given, then

s = p2
1+ p2

2+ 2p1 · p2=m2
1+m2

2+ 2m2E
L
1

is determined. Now, the cms energies of the four particles are obtained from scalar products

p1 · P =E1(E1+E2)=E1
√
s,
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so

E1=
p1 · (p1+ p2)√

s
= m2

1+ p1 · p2√
s

= m2
1−m2

2+ s

2
√
s

,

E2=
p2 · (p1+ p2)√

s
= m2

2+ p1 · p2√
s

= m2
2−m2

1+ s

2
√
s

,

E3=
p3 · (p3+ p4)√

s
= m2

3+ p3 · p4√
s

= m2
3−m2

4+ s

2
√
s

,

E4=
p4 · (p3+ p4)√

s
= m2

4+ p3 · p4√
s

= m2
4−m2

3+ s

2
√
s

,

by substituting

2p1 · p2= s −m2
1−m2

2, 2p3 · p4= s −m2
3−m2

4.

Thus, all cms energiesEi depend only on the incident energy but not on the scattering
angle. For elastic scattering,m3 = m1, m4 = m2, so E3 = E1, E4 = E2. The Lorentz
invariant momentum transfer squared

t = (p1− p3)
2=m2

1+m2
3− 2p1 · p3

depends linearly on the cosine of the scattering angle.

Example 4.5.1 KAON DECAY AND PION PHOTOPRODUCTION THRESHOLD

Find the kinetic energies of the muon of mass 106 MeV and massless neutrino into which
a K meson of mass 494 MeV decays in its rest frame.

Conservation of energy and momentum givesmK =Eµ+Eν =
√
s. Applying the rela-

tivistic kinematics described previously yields

Eµ =
pµ · (pµ + pν)

mK

=
m2

µ + pµ · pν

mK

,

Eν =
pν · (pµ + pν)

mK

= pµ · pν

mK

.

Combining both results we obtainm2
K =m2

µ + 2pµ · pν , so

Eµ = Tµ +mµ =
m2

K +m2
µ

2mK

= 258.4 MeV,

Eν = Tν =
m2

K −m2
µ

2mK

= 235.6 MeV.

As another example, in the production of a neutral pion by an incident photon according to
γ + p→ π0+ p′ at threshold, the neutral pion and proton are created at rest in the cms.
Therefore,

s = (pγ + p)2=m2
p + 2mpE

L
γ = (pπ + p′)2= (mπ +mp)

2,
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soEL
γ =mπ + m2

π

2mp
= 144.7 MeV. �

Exercises

4.5.1 Two Lorentz transformations are carried out in succession:v1 along thex-axis, then
v2 along they-axis. Show that the resultant transformation (given by the product of
these two successive transformations)cannot be put in the form of a single Lorentz
transformation.
Note. The discrepancy corresponds to a rotation.

4.5.2 Rederive the Lorentz transformation, working entirely in the real space(x0, x1, x2, x3)

with x0 = x0 = ct . Show that the Lorentz transformation may be writtenL(v) =
exp(ρσ ), with

σ =




0 −λ −µ −ν
−λ 0 0 0

−µ 0 0 0

−ν 0 0 0




andλ,µ, ν the direction cosines of the velocityv.

4.5.3 Using the matrix relation, Eq. (4.136), let the rapidityρ1 relate the Lorentz reference
frames(x′0, x′1) and (x0, x1). Let ρ2 relate(x′′0, x′′1) and (x′0, x′1). Finally, let ρ
relate(x′′0, x′′1) and(x0, x1). Fromρ = ρ1+ ρ2 derive the Einstein velocity addition
law

v = v1+ v2

1+ v1v2/c2
.

4.6 LORENTZ COVARIANCE OF MAXWELL’S EQUATIONS

If a physical law is to hold for all orientations of our (real) coordinates (that is, to be in-
variant under rotations), the terms of the equation must be covariant under rotations (Sec-
tions 1.2 and 2.6). This means that we write the physical laws in the mathematical form
scalar= scalar, vector= vector, second-rank tensor= second-rank tensor, and so on. Sim-
ilarly, if a physical law is to hold for all inertial systems, the terms of the equation must be
covariant under Lorentz transformations.

Using Minkowski space (ct = x0; x = x1, y = x2, z= x3), we have a four-dimensional
space with the metricgµν (Eq. (4.128), Section 4.5). The Lorentz transformations are linear
in space and time in this four-dimensional real space.19

19A group theoretic derivation of the Lorentz transformation in Minkowski space appears in Section 4.5. See also H. Goldstein,
Classical Mechanics. Cambridge, MA: Addison-Wesley (1951), Chapter 6. The metric equationx2

0 − x2 = 0, independent of
reference frame, leads to the Lorentz transformations.
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Here we consider Maxwell’s equations,

∇×E = −∂B
∂t

, (4.140a)

∇×H = ∂D
∂t
+ ρv, (4.140b)

∇ ·D = ρ, (4.140c)

∇ ·B = 0, (4.140d)

and the relations

D= ε0E, B= µ0H. (4.141)

The symbols have their usual meanings as given in Section 1.9. For simplicity we assume
vacuum (ε = ε0, µ= µ0).

We assume that Maxwell’s equations hold in all inertial systems; that is, Maxwell’s
equations are consistent with special relativity. (The covariance of Maxwell’s equations
under Lorentz transformations was actually shown by Lorentz and Poincaré before Ein-
stein proposed his theory of special relativity.) Our immediate goal is to rewrite Maxwell’s
equations as tensor equations in Minkowski space. This will make the Lorentz covariance
explicit, or manifest.

In terms of scalar,ϕ, and magnetic vector potentials,A, we may solve20 Eq. (4.140d)
and then (4.140a) by

B = ∇×A

E = −∂A
∂t
−∇ϕ. (4.142)

Equation (4.142) specifies the curl ofA; the divergence ofA is still undefined (compare
Section 1.16). We may, and for future convenience we do, impose a further gauge restric-
tion on the vector potentialA:

∇ ·A + ε0µ0
∂ϕ

∂t
= 0. (4.143)

This is the Lorentz gauge relation. It will serve the purpose of uncoupling the differential
equations forA andϕ that follow. The potentialsA andϕ are not yet completely fixed.
The freedom remaining is the topic of Exercise 4.6.4.

Now we rewrite the Maxwell equations in terms of the potentialsA and ϕ. From
Eqs. (4.140c) for∇ ·D, (4.141) and (4.142),

∇2ϕ +∇ · ∂A
∂t
=− ρ

ε0
, (4.144)

whereas Eqs. (4.140b) for∇×H and (4.142) and Eq. (1.86c) of Chapter 1 yield

∂2A
∂t2

+∇
∂ϕ

∂t
+ 1

ε0µ0

{
∇∇ ·A −∇2A

}
= ρv

ε0
. (4.145)

20Compare Section 1.13, especially Exercise 1.13.10.
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Using the Lorentz relation, Eq. (4.143), and the relationε0µ0= 1/c2, we obtain
[
∇2− 1

c2

∂2

∂t2

]
A = −µ0ρv,

[
∇2− 1

c2

∂2

∂t2

]
ϕ = − ρ

ε0
. (4.146)

Now, the differential operator (see also Exercise 2.7.3)

∇2− 1

c2

∂2

∂t2
≡−∂2≡−∂µ∂µ

is a four-dimensional Laplacian, usually called the d’Alembertian and also sometimes de-
noted by�. It is a scalar by construction (see Exercise 2.7.3).

For convenience we define

A1≡ Ax

µ0c
= cε0Ax, A3≡ Az

µ0c
= cε0Az,

A2≡ Ay

µ0c
= cε0Ay, A0≡ ε0ϕ =A0.

(4.147)

If we further define a four-vector current density

ρvx

c
≡ j1,

ρvy

c
≡ j2,

ρvz

c
≡ j3, ρ ≡ j0= j0, (4.148)

then Eq. (4.146) may be written in the form

∂2Aµ = jµ. (4.149)

The wave equation (4.149) looks like a four-vector equation, but looks do not constitute
proof. To prove that it is a four-vector equation, we start by investigating the transformation
properties of the generalized currentjµ.

Since an electric charge elementde is an invariant quantity, we have

de= ρdx1dx2dx3, invariant. (4.150)

We saw in Section 2.9 that the four-dimensional volume elementdx0dx1dx2dx3 was also
invariant, a pseudoscalar. Comparing this result, Eq. (2.106), with Eq. (4.150), we see that
the charge densityρ must transform the same way asdx0, the zeroth component of a four-
dimensional vectordxλ. We putρ = j0, with j0 now established as the zeroth component
of a four-vector. The other parts of Eq. (4.148) may be expanded as

j1= ρvx

c
= ρ

c

dx1

dt
= j0dx

1

dx0
. (4.151)

Since we have just shown thatj0 transforms asdx0, this means thatj1 transforms asdx1.
With similar results forj2 andj3, We havejλ transforming asdxλ, proving thatjλ is a
four-vector in Minkowski space.

Equation (4.149), which follows directly from Maxwell’s equations, Eqs. (4.140), is
assumed to hold in all Cartesian systems (all Lorentz frames). Then, by the quotient rule,
Section 2.8,Aµ is also a vector and Eq. (4.149) is a legitimate tensor equation.
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Now, working backward, Eq. (4.142) may be written

ε0Ej = −
∂Aj

∂x0
− ∂A0

∂xj
, j = 1,2,3,

(4.152)
1

µ0c
Bi =

∂Ak

∂xj
− ∂Aj

∂xk
, (i, j, k)= cyclic (1,2,3).

We define a new tensor,

∂µAλ − ∂λAµ = ∂Aλ

∂xµ
− ∂Aµ

∂xλ
≡ Fµλ =−F λµ (µ,λ= 0,1,2,3),

an antisymmetric second-rank tensor, sinceAλ is a vector. Written out explicitly,

Fµλ

ε0
=




0 Ex Ey Ez

−Ex 0 −cBz cBy

−Ey cBz 0 −cBx

−Ez −cBy cBx 0



,

Fµλ

ε0
=




0 −Ex −Ey −Ez

Ex 0 −cBz cBy

Ey cBz 0 −cBx

Ez −cBy cBx 0



.

(4.153)

Notice that in our four-dimensional Minkowski spaceE andB are no longer vectors but to-
gether form a second-rank tensor. With this tensor we may write the two nonhomogeneous
Maxwell equations ((4.140b) and (4.140c)) combined as a tensor equation,

∂Fλµ

∂xµ
= jλ. (4.154)

The left-hand side of Eq. (4.154) is a four-dimensional divergence of a tensor and therefore
a vector. This, of course, is equivalent to contracting a third-rank tensor∂F λµ/∂xν (com-
pare Exercises 2.7.1 and 2.7.2). The two homogeneous Maxwell equations — (4.140a) for
∇×E and (4.140d) for∇ ·B — may be expressed in the tensor form

∂F23

∂x1
+ ∂F31

∂x2
+ ∂F12

∂x3
= 0 (4.155)

for Eq. (4.140d) and three equations of the form

−∂F30

∂x2
− ∂F02

∂x3
+ ∂F23

∂x0
= 0 (4.156)

for Eq. (4.140a). (A second equation permutes 120, a third permutes 130.) Since

∂λFµν = ∂Fµν

∂xλ
≡ tλµν

is a tensor (of third rank), Eqs. (4.140a) and (4.140d) are given by the tensor equation

tλµν + tνλµ + tµνλ = 0. (4.157)

From Eqs. (4.155) and (4.156) you will understand that the indicesλ,µ, andν are supposed
to be different. Actually Eq. (4.157) automatically reduces to 0= 0 if any two indices
coincide. An alternate form of Eq. (4.157) appears in Exercise 4.6.14.
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Lorentz Transformation of E and B

The construction of the tensor equations ((4.154) and (4.157)) completes our initial goal of
rewriting Maxwell’s equations in tensor form.21 Now we exploit the tensor properties of
our four vectors and the tensorFµν .

For the Lorentz transformation corresponding to motion along thez(x3)-axis with ve-
locity v, the “direction cosines” are given by22

x′0= γ
(
x0− βx3

)

x′3= γ
(
x3− βx0

)
,

(4.158)

where

β = v

c

and

γ =
(
1− β2)−1/2

. (4.159)

Using the tensor transformation properties, we may calculate the electric and magnetic
fields in the moving system in terms of the values in the original reference frame. From
Eqs. (2.66), (4.153), and (4.158) we obtain

E′x =
1√

1− β2

(
Ex −

v

c2
By

)
,

E′y =
1√

1− β2

(
Ey +

v

c2
Bx

)
, (4.160)

E′z = Ez

and

B ′x =
1√

1− β2

(
Bx +

v

c2
Ey

)
,

B ′y =
1√

1− β2

(
By −

v

c2
Ex

)
, (4.161)

B ′z = Bz.

This coupling ofE andB is to be expected. Consider, for instance, the case of zero electric
field in the unprimed system

Ex =Ey =Ez = 0.

21Modern theories of quantum electrodynamics and elementary particles are often written in this “manifestly covariant” form
to guarantee consistency with special relativity. Conversely, the insistence on such tensor form has been a useful guide in the
construction of these theories.
22A group theoretic derivation of the Lorentz transformation appears in Section 4.5. See also Goldstein,loc. cit., Chapter 6.
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Clearly, there will be no force on a stationary charged particle. When the particle is in
motion with a small velocityv along thez-axis,23 an observer on the particle sees fields
(exerting a force on his charged particle) given by

E′x = −vBy,

E′y = vBx,

whereB is a magnetic induction field in the unprimed system. These equations may be put
in vector form,

E′ = v×B

or (4.162)

F= qv×B,

which is usually taken as the operational definition of the magnetic inductionB.

Electromagnetic Invariants

Finally, the tensor (or vector) properties allow us to construct a multitude of invariant
quantities. A more important one is the scalar product of the two four-dimensional vectors
or four-vectorsAλ andjλ. We have

Aλjλ = −cε0Ax

ρvx

c
− cε0Ay

ρvy

c
− cε0Az

ρvz

c
+ ε0ϕρ

= ε0(ρϕ −A · J), invariant, (4.163)

with A the usual magnetic vector potential andJ the ordinary current density. The first
term,ρϕ, is the ordinary static electric coupling, with dimensions of energy per unit vol-
ume. Hence our newly constructed scalar invariant is an energy density. The dynamic in-
teraction of field and current is given by the productA · J. This invariantAλjλ appears in
the electromagnetic Lagrangians of Exercises 17.3.6 and 17.5.1.

Other possible electromagnetic invariants appear in Exercises 4.6.9 and 4.6.11.
The Lorentz group is the symmetry group of electrodynamics, of the electroweak gauge

theory, and of the strong interactions described by quantum chromodynamics: It governs
special relativity. The metric of Minkowski space–time is Lorentz invariant and expresses
the propagation of light; that is, the velocity of light is the same in all inertial frames.
Newton’s equations of motion are straightforward to extend to special relativity. The kine-
matics of two-body collisions are important applications of vector algebra in Minkowski
space–time.

23If the velocity is not small, a relativistic transformation of force is needed.
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Exercises

4.6.1 (a) Show that every four-vector in Minkowski space may be decomposed into an or-
dinary three-space vector and a three-space scalar. Examples:(ct, r), (ρ,ρv/c),
(ε0ϕ, cε0A), (E/c,p), (ω/c,k).
Hint. Consider a rotation of the three-space coordinates with time fixed.

(b) Show that the converse of (a) isnot true — every three-vector plus scalar doesnot
form a Minkowski four-vector.

4.6.2 (a) Show that

∂µjµ = ∂ · j = ∂jµ

∂xµ
= 0.

(b) Show how the previous tensor equation may be interpreted as a statement of con-
tinuity of charge and current in ordinary three-dimensional space and time.

(c) If this equation is known to hold in all Lorentz reference frames, why can we not
conclude thatjµ is a vector?

4.6.3 Write the Lorentz gauge condition (Eq. (4.143)) as a tensor equation in Minkowski
space.

4.6.4 A gauge transformation consists of varying the scalar potentialϕ1 and the vector poten-
tial A1 according to the relation

ϕ2 = ϕ1+
∂χ

∂t
,

A2 = A1−∇χ.

The new functionχ is required to satisfy the homogeneous wave equation

∇2χ − 1

c2

∂2χ

∂t2
= 0.

Show the following:

(a) The Lorentz gauge relation is unchanged.
(b) The new potentials satisfy the same inhomogeneous wave equations as did the

original potentials.
(c) The fieldsE andB are unaltered.

The invariance of our electromagnetic theory under this transformation is calledgauge
invariance.

4.6.5 A charged particle, chargeq, massm, obeys the Lorentz covariant equation

dpµ

dτ
= q

ε0mc
Fµνpν,

wherepν is the four-momentum vector(E/c;p1,p2,p3), τ is the proper time,dτ =
dt
√

1− v2/c2, a Lorentz scalar. Show that the explicit space–time forms are

dE

dt
= qv ·E; dp

dt
= q(E+ v×B).
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4.6.6 From the Lorentz transformation matrix elements (Eq. (4.158)) derive the Einstein ve-
locity addition law

u′ = u− v

1− (uv/c2)
or u= u′ + v

1+ (u′v/c2)
,

whereu= c dx3/dx0 andu′ = c dx′3/dx′0.
Hint. If L12(v) is the matrix transforming system 1 into system 2,L23(u

′) the matrix
transforming system 2 into system 3,L13(u) the matrix transforming system 1 directly
into system 3, thenL13(u) = L23(u

′)L12(v). From this matrix relation extract the Ein-
stein velocity addition law.

4.6.7 The dual of a four-dimensional second-rank tensorB may be defined bỹB, where the
elements of the dual tensor are given by

B̃ij = 1

2!ε
ijklBkl .

Show thatB̃ transforms as

(a) a second-rank tensor under rotations,
(b) a pseudotensor under inversions.

Note. The tilde here doesnot mean transpose.

4.6.8 ConstructF̃, the dual ofF, whereF is the electromagnetic tensor given by Eq. (4.153).

ANS. F̃µν = ε0




0 −cBx −cBy −cBz

cBx 0 Ez −Ey

cBy −Ez 0 Ex

cBz Ey −Ex 0



.

This corresponds to

cB→−E,

E→ cB.

This transformation, sometimes called adual transformation , leaves Maxwell’s equa-
tions in vacuum(ρ = 0) invariant.

4.6.9 Because the quadruple contraction of a fourth-rank pseudotensor and two second-rank
tensorsεµλνσFµλF νσ is clearly a pseudoscalar, evaluate it.

ANS.−8ε2
0cB ·E.

4.6.10 (a) If an electromagnetic field is purely electric (or purely magnetic) in one particular
Lorentz frame, show thatE andB will be orthogonal in other Lorentz reference
systems.

(b) Conversely, ifE andB are orthogonal in one particular Lorentz frame, there exists
a Lorentz reference system in whichE (or B) vanishes. Find that reference system.
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4.6.11 Show thatc2B2−E2 is a Lorentz scalar.

4.6.12 Since(dx0, dx1, dx2, dx3) is a four-vector,dxµ dxµ is a scalar. Evaluate this scalar
for a moving particle in two different coordinate systems: (a) a coordinate system fixed
relative to you (lab system), and (b) a coordinate system moving with a moving particle
(velocity v relative to you). With the time increment labeleddτ in the particle system
anddt in the lab system, show that

dτ = dt

√
1− v2/c2.

τ is the proper time of the particle, a Lorentz invariant quantity.

4.6.13 Expand the scalar expression

− 1

4ε0
FµνF

µν + 1

ε0
jµA

µ

in terms of the fields and potentials. The resulting expression is the Lagrangian density
used in Exercise 17.5.1.

4.6.14 Show that Eq. (4.157) may be written

εαβγ δ
∂F αβ

∂xγ
= 0.

4.7 DISCRETE GROUPS

Here we consider groups with a finite number of elements. In physics, groups usually ap-
pear as a set of operations that leave a system unchanged, invariant. This is an expression
of symmetry. Indeed, a symmetry may be defined as the invariance of the Hamiltonian of a
system under a group of transformations. Symmetry in this sense is important in classical
mechanics, but it becomes even more important and more profound in quantum mechan-
ics. In this section we investigate the symmetry properties of sets of objects (atoms in a
molecule or crystal). This provides additional illustrations of the group concepts of Sec-
tion 4.1 and leads directly to dihedral groups. The dihedral groups in turn open up the study
of the 32 crystallographic point groups and 230 space groups that are of such importance
in crystallography and solid-state physics. It might be noted that it was through the study
of crystal symmetries that the concepts of symmetry and group theory entered physics. In
physics, the abstract group conditions often take on direct physical meaning in terms of
transformations of vectors, spinors, and tensors.

As a simple, but not trivial, example of a finite group, consider the set 1, a, b, c that
combine according to the group multiplication table24 (see Fig. 4.10). Clearly, the four
conditions of the definition of “group” are satisfied. The elementsa, b, c, and 1 are ab-
stract mathematical entities, completely unrestricted except for the multiplication table of
Fig. 4.10.

Now, for a specific representation of these group elements, let

1→ 1, a→ i, b→−1, c→−i, (4.164)

24The order of the factors is row–column:ab= c in the indicated previous example.
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FIGURE 4.10 Group
multiplication table.

combining by ordinary multiplication. Again, the four group conditions are satisfied, and
these four elements form a group. We label this groupC4. Since the multiplication of
the group elements is commutative, the group is labeledcommutative, or abelian. Our
group is also acyclic group, in that the elements may be written as successive powers of
one element, in this casein, n = 0,1,2,3. Note that in writing out Eq. (4.164) we have
selected a specific faithful representation for this group of four objects,C4.

We recognize that the group elements 1, i,−1,−i may be interpreted as successive 90◦

rotations in the complex plane. Then, from Eq. (3.74), we create the set of four 2×2 matri-
ces (replacingϕ by−ϕ in Eq. (3.74) to rotate a vector rather than rotate the coordinates):

R(ϕ)=
(

cosϕ −sinϕ

sinϕ cosϕ

)
,

and forϕ = 0,π/2,π , and 3π/2 we have

1=
(

1 0

0 1

)
A=

(
0 −1

1 0

)

B=
(
−1 0

0 −1

)
C=

(
0 1

−1 0

)
.

(4.165)

This set of four matrices forms a group, with the law of combination being matrix multipli-
cation. Here is a second faithful representation. By matrix multiplication one verifies that
this representation is also abelian and cyclic. Clearly, there is a one-to-one correspondence
of the two representations

1↔ 1↔ 1 a↔ i↔ A b↔−1↔ B c↔−i↔C. (4.166)

In the groupC4 the two representations(1, i,−1,−i) and(1,A,B,C) are isomorphic.
In contrast to this, there is no such correspondence between either of these representa-

tions of groupC4 and another group of four objects, the vierergruppe (Exercise 3.2.7). The

Table 4.3

1 V1 V2 V3

1 1 V1 V2 V3
V1 V1 1 V3 V2
V2 V2 V3 1 V1
V3 V3 V2 V1 1
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vierergruppe has the multiplication table shown in Table 4.3. Confirming the lack of cor-
respondence between the group represented by(1, i,−1,−i) or the matrices(1,A,B,C)

of Eq. (4.165), note that although the vierergruppe is abelian, it is not cyclic. The cyclic
groupC4 and the vierergruppe are not isomorphic.

Classes and Character

Consider a group elementx transformed into a group elementy by a similarity transform
with respect togi , an element of the group

gixg
−1
i = y. (4.167)

The group elementy is conjugate to x. A classis a set of mutually conjugate group ele-
ments. In general, this set of elements forming a class does not satisfy the group postulates
and is not a group. Indeed, the unit element 1, which is always in a class by itself, is the
only class that is also a subgroup. All members of a given class are equivalent, in the sense
that any one element is a similarity transform of any other element. Clearly, if a group is
abelian, every element is a class by itself. We find that

1. Every element of the original group belongs to one and only one class.
2. The number of elements in a class is a factor of the order of the group.

We get a possible physical interpretation of the concept of class by noting thaty is a
similarity transform ofx. If gi represents a rotation of the coordinate system, theny is the
same operation asx but relative to the new, related coordinates.

In Section 3.3 we saw that a real matrix transforms under rotation of the coordinates
by an orthogonal similarity transformation. Depending on the choice of reference frame,
essentially the same matrix may take on an infinity of different forms. Likewise, our group
representations may be put in an infinity of different forms by using unitary transforma-
tions. But each such transformed representation is isomorphic with the original. From Ex-
ercise 3.3.9 the trace of each element (each matrix of our representation) is invariant under
unitary transformations. Just because it is invariant, the trace (relabeled thecharacter) as-
sumes a role of some importance in group theory, particularly in applications to solid-state
physics. Clearly, all members of a given class (in a given representation) have the same
character. Elements of different classes may have the same character, but elements with
different characters cannot be in the same class.

The concept of class is important (1) because of the trace or character and (2) because
the number of nonequivalent irreducible representations of a group is equal to the
number of classes.

Subgroups and Cosets

Frequently a subset of the group elements (including the unit elementI ) will by itself
satisfy the four group requirements and therefore is a group. Such a subset is called asub-
group. Every group has two trivial subgroups: the unit element alone and the group itself.
The elements 1 andb of the four-element groupC4 discussed earlier form a nontrivial
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subgroup. In Section 4.1 we considerSO(3), the (continuous) group of all rotations in or-
dinary space. The rotations about any single axis form a subgroup ofSO(3). Numerous
other examples of subgroups appear in the following sections.

Consider a subgroupH with elementshi and a group elementx not inH . Thenxhi and
hix are not in subgroupH . The sets generated by

xhi, i = 1,2, . . . and hix, i = 1,2, . . .

are calledcosets, respectively the left and right cosets of subgroupH with respect tox. It
can be shown (assume the contrary and prove a contradiction) that the coset of a subgroup
has the same number of distinct elements as the subgroup. Extending this result we may
express the original groupG as the sum ofH and cosets:

G=H + x1H + x2H + · · · .

Then the order of any subgroup is a divisor of the order of the group. It is this result
that makes the concept of coset significant. In the next section the six-element groupD3

(order 6) has subgroups of order 1, 2, and 3.D3 cannot (and does not) have subgroups of
order 4 or 5.

The similarity transform of a subgroupH by a fixed group elementx not in H,xHx−1,
yields a subgroup — Exercise 4.7.8. If this new subgroup is identical withH for all x, that
is,

xHx−1=H,

thenH is called aninvariant, normal , or self-conjugate subgroup. Such subgroups are
involved in the analysis of multiplets of atomic and nuclear spectra and the particles dis-
cussed in Section 4.2. All subgroups of a commutative (abelian) group are automatically
invariant.

Two Objects — Twofold Symmetry Axis

Consider first the two-dimensional system of two identical atoms in thexy-plane at (1,
0) and (−1, 0), Fig. 4.11. What rotations25 can be carried out (keeping both atoms in the
xy-plane) that will leave this system invariant? The first candidate is, of course, the unit
operator 1. A rotation ofπ radians about thez-axis completes the list. So we have a rather
uninteresting group of two members (1,−1). Thez-axis is labeled a twofold symmetry
axis — corresponding to the two rotation angles, 0 andπ , that leave the system invariant.

Our system becomes more interesting in three dimensions. Now imagine a molecule
(or part of a crystal) with atoms of elementX at±a on thex-axis, atoms of elementY
at±b on they-axis, and atoms of elementZ at±c on thez-axis, as show in Fig. 4.12.
Clearly, each axis is now a twofold symmetry axis. UsingRx(π) to designate a rotation of
π radians about thex-axis, we may

25Here we deliberately exclude reflections and inversions. They must be brought in to develop the full set of 32 crystallographic
point groups.
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FIGURE 4.11 Diatomic molecules H2, N2, O2,
Cl2.

FIGURE 4.12 D2 symmetry.

set up a matrix representation of the rotations as in Section 3.3:

Rx(π) =




1 0 0

0 −1 0

0 0 −1


 , Ry(π) =



−1 0 0

0 1 0

0 0 −1


 ,

Rz(π) =



−1 0 0

0 −1 0

0 0 1


 , 1 =




1 0 0

0 1 0

0 0 1


 .

(4.168)

These four elements[1,Rx(π),Ry(π),Rz(π)] form an abelian group, with the group mul-
tiplication table shown in Table 4.4.

The products shown in Table 4.4 can be obtained in either of two distinct ways:
(1) We may analyze the operations themselves — a rotation ofπ about thex-axis fol-
lowed by a rotation ofπ about they-axis is equivalent to a rotation ofπ about thez-axis:
Ry(π)Rx(π)= Rz(π). (2) Alternatively, once a faithful representation is established, we
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Table 4.4

1 Rx (π) Ry (π) Rz(π)

1 1 Rx Ry Rx

Rx (π) Rx 1 Rz Ry

Ry (π) Ry Rz 1 Rx

Rz(π) Rz Ry Rx 1

can obtain the products by matrix multiplication. This is where the power of mathematics
is shown — when the system is too complex for a direct physical interpretation.

Comparison with Exercises 3.2.7, 4.7.2, and 4.7.3 shows that this group is the vier-
ergruppe. The matrices of Eq. (4.168) are isomorphic with those of Exercise 3.2.7. Also,
they are reducible, being diagonal. The subgroups are(1,Rx), (1,Ry), and(1,Rz). They
are invariant. It should be noted that a rotation ofπ about they-axis and a rotation ofπ
about thez-axis is equivalent to a rotation ofπ about thex-axis: Rz(π)Ry(π) = Rx(π).
In symmetry terms, ify andz are twofold symmetry axes,x is automatically a twofold
symmetry axis.

This symmetry group,26 the vierergruppe, is often labeledD2, theD signifying a dihe-
dral group and the subscript 2 signifying a twofold symmetry axis (and no higher symmetry
axis).

Three Objects — Threefold Symmetry Axis

Consider now three identical atoms at the vertices of an equilateral triangle, Fig. 4.13.
Rotations of thetriangle of 0,2π/3, and 4π/3 leave the triangle invariant. In matrix form,
we have27

1 = Rz(0)=
(

1 0

0 1

)

A = Rz(2π/3)=
(

cos2π/3 − sin2π/3

sin2π/3 cos2π/3

)
=
(
−1/2 −

√
3/2

√
3/2 −1/2

)

B = Rz(4π/3)=
(
−1/2

√
3/2

−
√

3/2 −1/2

)
. (4.169)

Thez-axis is a threefold symmetry axis.(1,A,B) form a cyclic group, a subgroup of the
complete six-element group that follows.

In the xy-plane there are three additional axes of symmetry — each atom (vertex) and
the geometric center defining an axis. Each of these is a twofold symmetry axis. These rota-
tions may most easily be described within our two-dimensional framework by introducing

26A symmetry group is a group of symmetry-preserving operations, that is, rotations, reflections, and inversions. Asymmetric
group is the group of permutations ofn distinct objects — of ordern!.
27Note that here we are rotating thetriangle counterclockwise relative to fixed coordinates.
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FIGURE 4.13 Symmetry operations on an
equilateral triangle.

reflections. The rotation ofπ about theC- (or y-) axis, which means the interchanging of
(structureless) atomsa andc, is just a reflection of thex-axis:

C=RC(π)=
(
−1 0

0 1

)
. (4.170)

We may replace the rotation about theD-axis by a rotation of 4π/3 (about ourz-axis)
followed by a reflection of thex-axis(x→−x) (Fig. 4.14):

D = RD(π)=CB

=
(
−1 0

0 1

)(
−1/2

√
3/2

−
√

3/2 − 1/2

)

=
(

1/2 −
√

3/2

−
√

3/2 − 1/2

)
. (4.171)

FIGURE 4.14 The triangle on the right is the triangle on
the left rotated 180◦ about theD-axis.D=CB.
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In a similar manner, the rotation ofπ about theE-axis, interchanginga andb, is replaced
by a rotation of 2π/3(A) and then a reflection28 of thex-axis:

E = RE(π)=CA

=
(
−1 0

0 1

)(
−1/2 −

√
3/2

√
3/2 − 1/2

)

=
(

1/2
√

3/2
√

3/2 − 1/2

)
. (4.172)

The complete group multiplication table is

1 A B C D E
1 1 A B C D E
A A B 1 D E C
B B 1 A E C D
C C E D 1 B A
D D C E A 1 B
E E D C B A 1

Notice that each element of the group appears only once in each row and in each column, as
required by the rearrangement theorem, Exercise 4.7.4. Also, from the multiplication table
the group is not abelian. We have constructed a six-element group and a 2× 2 irreducible
matrix representation of it. The only other distinct six-element group is the cyclic group
[1,R,R2,R3,R4,R5], with

R = e2πi/6 or R= e−πiσ2/3=
(

1/2 −
√

3/2
√

3/2 1/2

)
. (4.173)

Our group[1,A,B,C,D,E] is labeledD3 in crystallography, the dihedral group with a
threefold axis of symmetry. The three axes (C,D, andE) in the xy-plane automatically
become twofold symmetry axes. As a consequence,(1,C), (1,D), and (1,E) all form
two-element subgroups. None of these two-element subgroups ofD3 is invariant.

A general and most important result for finite groups ofh elements is that

∑

i

n2
i = h, (4.174)

whereni is the dimension of the matrices of theith irreducible representation. This equal-
ity, sometimes called thedimensionality theorem, is very useful in establishing the irre-
ducible representations of a group. Here forD3 we have 12 + 12 + 22 = 6 for our three
representations. No other irreducible representations of this symmetry group of three ob-
jects exist. (The other representations are the identity and±1, depending upon whether a
reflection was involved.)

28Note that, as a consequence of these reflections, det(C) = det(D) = det(E) = −1. The rotationsA andB, of course, have a
determinant of+1.
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FIGURE 4.15 Ruthenocene.

Dihedral Groups, Dn

A dihedral groupDn with ann-fold symmetry axis impliesn axes with angular separation
of 2π/n radians,n is a positive integer, but otherwise unrestricted. If we apply the symme-
try arguments tocrystal lattices, thenn is limited to 1, 2, 3, 4, and 6. The requirement of
invariance of the crystal lattice under translations in the plane perpendicular to then-fold
axis excludesn = 5,7, and higher values. Try to cover a plane completely with identical
regular pentagons and with no overlapping.29 For individual molecules, this constraint does
not exist, although the examples withn > 6 are rare.n= 5 is a real possibility. As an ex-
ample, the symmetry group for ruthenocene,(C5H5)2Ru, illustrated in Fig. 4.15, isD5.30

Crystallographic Point and Space Groups

The dihedral groups just considered are examples of the crystallographic point groups.
A point group is composed of combinations of rotations and reflections (including inver-
sions) that will leave some crystal lattice unchanged. Limiting the operations to rotations
and reflections (including inversions) means that one point — the origin — remainsfixed,
hence the termpoint group. Including the cyclic groups, two cubic groups (tetrahedron
and octahedron symmetries), and the improper forms (involving reflections), we come to a
total of 32 crystallographic point groups.

29ForD6 imagine a plane covered with regular hexagons and the axis of rotation through the geometric center of one of them.
30Actually the full technical label isD5h, with h indicating invariance under areflection of the fivefold axis.
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If, to the rotation and reflection operations that produced the point groups, we add the
possibility of translations and still demand that some crystal lattice remain invariant, we
come to the space groups. There are 230 distinct space groups, a number that is appalling
except, possibly, to specialists in the field. For details (which can cover hundreds of pages)
see the Additional Readings.

Exercises

4.7.1 Show that the matrices1,A,B, andC of Eq. (4.165) are reducible. Reduce them.
Note. This means transformingA andC to diagonal form (by the same unitary transfor-
mation).
Hint. A andC are anti-Hermitian. Their eigenvectors will be orthogonal.

4.7.2 Possible operations on a crystal lattice includeAπ (rotation byπ ), m (reflection), andi
(inversion). These three operations combine as

A2
π = m2= i2= 1,

Aπ ·m = i, m · i =Aπ , and i ·Aπ =m.

Show that the group(1,Aπ ,m, i) is isomorphic with the vierergruppe.

4.7.3 Four possible operations in thexy-plane are:

1. no change

{
x→ x

y→ y

2. inversion

{
x→−x
y→−y

3. reflection

{
x→−x
y→ y

4. reflection

{
x→ x

y→−y.

(a) Show that these four operations form a group.
(b) Show that this group is isomorphic with the vierergruppe.
(c) Set up a 2× 2 matrix representation.

4.7.4 Rearrangement theorem: Given a group of n distinct elements(I, a, b, c, . . . , n), show
that the set of products(aI, a2, ab, ac . . . an) reproduces then distinct elements in a
new order.

4.7.5 Using the 2× 2 matrix representation of Exercise 3.2.7 for the vierergruppe,

(a) Show that there are four classes, each with one element.
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(b) Calculate the character (trace) of each class. Note that two different classes may
have the same character.

(c) Show that there are three two-element subgroups. (The unit element by itself al-
ways forms a subgroup.)

(d) For any one of the two-element subgroups show that the subgroup and a single
coset reproduce the original vierergruppe.

Note that subgroups, classes, and cosets are entirely different.

4.7.6 Using the 2× 2 matrix representation, Eq. (4.165), ofC4,

(a) Show that there are four classes, each with one element.
(b) Calculate the character (trace) of each class.
(c) Show that there is one two-element subgroup.
(d) Show that the subgroup and a single coset reproduce the original group.

4.7.7 Prove that the number of distinct elements in a coset of a subgroup is the same as the
number of elements in the subgroup.

4.7.8 A subgroupH has elementshi . Let x be a fixed element of the original groupG and
not a member ofH . The transform

xhix
−1, i = 1,2, . . .

generates aconjugate subgroupxHx−1. Show that this conjugate subgroup satisfies
each of the four group postulates and therefore is a group.

4.7.9 (a) A particular group is abelian. A second group is created by replacinggi by g−1
i

for each element in the original group. Show that the two groups are isomorphic.
Note. This means showing that ifaibi = ci , thena−1

i b−1
i = c−1

i .
(b) Continuing part (a), if the two groups are isomorphic, show that each must be

abelian.

4.7.10 (a) Once you have a matrix representation of any group, a one-dimensional represen-
tation can be obtained by taking the determinants of the matrices. Show that the
multiplicative relations are preserved in this determinant representation.

(b) Use determinants to obtain a one-dimensional representative ofD3.

4.7.11 Explain how the relation

∑

i

n2
i = h

applies to the vierergruppe(h= 4) and to the dihedral groupD3 with h= 6.

4.7.12 Show that the subgroup(1,A,B) of D3 is an invariant subgroup.

4.7.13 The groupD3 may be discussed as apermutation group of three objects. MatrixB, for
instance, rotates vertexa (originally in location 1) to the position formerly occupied byc
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(location 3). Vertexb moves from location 2 to location 1, and so on. As a permutation
(abc)→ (bca). In three dimensions




0 1 0

0 0 1

1 0 0






a

b

c


=



b

c

a


 .

(a) Develop analogous 3× 3 representations for the other elements ofD3.
(b) Reduce your 3× 3 representation to the 2× 2 representation of this section.

(This 3× 3 representation must be reducible or Eq. (4.174) would be violated.)
Note. The actual reduction of a reducible representation may be awkward. It is often
easier to develop directly a new representation of the required dimension.

4.7.14 (a) The permutation group of four objectsP4 has 4! = 24 elements. Treating the four
elements of the cyclic groupC4 as permutations, set up a 4× 4 matrix representa-
tion of C4. C4 that becomes a subgroup ofP4.

(b) How do you know that this 4× 4 matrix representation ofC4 must be reducible?
Note. C4 is abelian and every abelian group ofh objects has onlyh one-dimensional
irreducible representations.

4.7.15 (a) The objects(abcd) are permuted to(dacb). Write out a 4×4 matrix representation
of this one permutation.

(b) Is the permutation(abdc)→ (dacb) odd or even?
(c) Is this permutation a possible member of theD4 group? Why or why not?

4.7.16 The elements of the dihedral groupDn may be written in the form

SλRµ
z (2π/n), λ= 0,1

µ= 0,1, . . . , n− 1,

whereRz(2π/n) represents a rotation of 2π/n about then-fold symmetry axis, whereas
S represents a rotation ofπ about an axis through the center of the regular polygon and
one of its vertices.
For S= E show that this form may describe the matricesA,B,C, andD of D3.
Note. The elementsRz andS are called the generators of this finite group. Similarly,
i is the generator of the group given by Eq. (4.164).

4.7.17 Show that the cyclic group ofn objects, Cn, may be represented byrm,m =
0,1,2, . . . , n− 1. Herer is a generator given by

r = exp(2πis/n).

The parameters takes on the valuess = 1,2,3, . . . , n, each value ofs yielding a differ-
ent one-dimensional (irreducible) representation ofCn.

4.7.18 Develop the irreducible 2×2 matrix representation of the group of operations (rotations
and reflections) that transform a square into itself. Give the group multiplication table.
Note. This is the symmetry group of a square and also the dihedral groupD4. (See
Fig. 4.16.)
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FIGURE 4.16
Square.

FIGURE 4.17 Hexagon.

4.7.19 The permutation group of four objects contains 4! = 24 elements. From Exercise 4.7.18,
D4, the symmetry group for a square, has far fewer than 24 elements. Explain the rela-
tion betweenD4 and the permutation group of four objects.

4.7.20 A plane is covered with regular hexagons, as shown in Fig. 4.17.

(a) Determine the dihedral symmetry of an axis perpendicular to the plane through the
common vertex of three hexagons(A). That is, if the axis hasn-fold symmetry,
show (with careful explanation) whatn is. Write out the 2× 2 matrix describing
the minimum (nonzero) positive rotation of the array of hexagons that is a member
of yourDn group.

(b) Repeat part (a) for an axis perpendicular to the plane through the geometric center
of one hexagon(B).

4.7.21 In a simple cubic crystal, we might have identical atoms atr = (la,ma,na), with l,m,
andn taking on all integral values.

(a) Show that each Cartesian axis is a fourfold symmetry axis.
(b) The cubic group will consist of all operations (rotations, reflections, inversion) that

leave the simple cubic crystal invariant. From a consideration of the permutation
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FIGURE 4.18
Multiplication table.

of the positive and negative coordinate axes, predict how many elements this cubic
group will contain.

4.7.22 (a) From theD3 multiplication table of Fig. 4.18 construct a similarity transform table
showingxyx−1, wherex andy each range over all six elements ofD3:

(b) Divide the elements ofD3 into classes. Using the 2× 2 matrix representation of
Eqs. (4.169)–(4.172) note the trace (character) of each class.

4.8 DIFFERENTIAL FORMS

In Chapters 1 and 2 we adopted the view that, inn dimensions, a vector is ann-tuple of real
numbers and that its components transform properly under changes of the coordinates. In
this section we start from the alternative view, in which a vector is thought of as a directed
line segment, an arrow. The point of the idea is this: Although the concept of a vector as
a line segment does not generalize to curved space–time (manifolds of differential geom-
etry), except by working in the flat tangent space requiring embedding in auxiliary extra
dimensions, Elie Cartan’s differential forms are natural in curved space–time and a very
powerful tool. Calculus can be based on differential forms, as Edwards has shown by his
classic textbook (see the Additional Readings). Cartan’s calculus leads to a remarkable
unification of concepts and theorems of vector analysis that is worth pursuing. In differ-
ential geometry and advanced analysis (on manifolds) the use of differential forms is now
widespread.

Cartan’s notion of vector is based on the one-to-one correspondence between the linear
spaces of displacement vectors and directional differential operators (components of the
gradient form a basis). A crucial advantage of the latter is that they can be generalized to
curved space–time. Moreover, describing vectors in terms of directional derivatives along
curves uniquely specifies the vector at a given point without the need to invoke coordinates.
Ultimately, since coordinates are needed to specify points, the Cartan formalism, though
an elegant mathematical tool for the efficient derivation of theorems on tensor analysis, has
in principle no advantage over the component formalism.

1-Forms

We definedx, dy, dz in three-dimensional Euclidean space as functions assigning to a
directed line segmentPQ from the pointP to the pointQ the corresponding change in
x, y, z. The symboldx represents “oriented length of the projection of a curve on the
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x-axis,” etc. Note thatdx, dy, dz can be, but need not be, infinitesimally small, andthey
must not be confused with the ordinary differentials that we associate with integrals
and differential quotients. A function of the type

Adx +B dy +C dz, A,B,C real numbers (4.175)

is defined as aconstant 1-form.

Example 4.8.1 CONSTANT 1-FORM

For a constant forceF = (A,B,C), the work done along the displacement fromP =
(3,2,1) to Q= (4,5,6) is therefore given by

W =A(4− 3)+B(5− 2)+C(6− 1)=A+ 3B + 5C.

If F is a force field, then its rectangular componentsA(x,y, z),B(x, y, z),C(x, y, z)

will depend on the location and the (nonconstant) 1-form dW = F · dr corresponds to
the concept of work done against the force fieldF(r) alongdr on a space curve. A finite
amount of work

W =
∫

C

[
A(x,y, z) dx +B(x, y, z) dy +C(x, y, z) dz

]
(4.176)

involves the familiar line integral along an oriented curveC, where the 1-formdW de-
scribes the amount of work for small displacements (segments on the pathC). In this light,
the integrandf (x)dx of an integral

∫ b

a
f (x)dx consisting of the functionf and of the

measuredx as the oriented length is here considered to be a 1-form. The value of the
integral is obtained from the ordinary line integral. �

2-Forms

Consider a unit flow of mass in thez-direction, that is, a flow in the direction of increasing
z so that a unit mass crosses a unit square of thexy-plane in unit time. The orientation
symbolized by the sequence of points in Fig. 4.19,

(0,0,0)→ (1,0,0)→ (1,1,0)→ (0,1,0)→ (0,0,0),

will be calledcounterclockwise, as usual. A unit flow in thez-direction is defined by the
functiondx dy31 assigning to oriented rectangles in space the oriented area of their projec-
tions on thexy-plane. Similarly, a unit flow in thex-direction is described bydy dz and a
unit flow in they-direction bydzdx. The reverse order,dzdx, is dictated by the orienta-
tion convention, anddzdx =−dx dz by definition. This antisymmetry is consistent with
the cross product of two vectors representing oriented areas in Euclidean space. This no-
tion generalizes to polygons and curved differentiable surfaces approximated by polygons
and volumes.

31Many authors denote this wedge product asdx ∧ dy with dy ∧ dx = −dx ∧ dy. Note that the productdx dy = dy dx for
ordinary differentials.
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FIGURE 4.19
Counterclockwise-oriented

rectangle.

Example 4.8.2 MAGNETIC FLUX ACROSS AN ORIENTED SURFACE

If B= (A,B,C) is a constant magnetic induction, then the constant2-form

Ady dz+B dzdx +C dx dy

describes the magnetic flux across an oriented rectangle. IfB is a magnetic induction field
varying across a surfaceS, then the flux

�=
∫

S

[
Bx(r) dy dz+By(r) dz dx +Bz(r) dx dy

]
(4.177)

across the oriented surfaceS involves the familiar (Riemann) integration over approximat-
ing small oriented rectangles from whichS is pieced together. �

The definition of
∫
ω relies on decomposingω=∑i ωi , where the differential formsωi

are each nonzero only in a small patch of the surfaceS that covers the surface. Then it can
be shown that

∑
i

∫
ωi converges, as the patches become smaller and more numerous, to

the limit
∫
ω, which is independent of these decompositions. For more details and proofs,

we refer the reader to Edwards in the Additional Readings.

3-Forms

A 3-form dx dy dz represents an oriented volume. For example, the determinant of three
vectors in Euclidean space changes sign if we reverse the order of two vectors. The
determinant measures the oriented volume spanned by the three vectors. In particular,∫
V
ρ(x, y, z) dx dy dz represents the total charge inside the volumeV if ρ is the charge

density. Higher-dimensional differential forms in higher-dimensional spaces are defined
similarly and are calledk-forms, withk = 0,1,2, . . . .

If a 3-form

ω=A(x1, x2, x3) dx1dx2dx3=A′(x′1, x
′
2, x

′
3) dx

′
1dx

′
2dx

′
3 (4.178)
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on a 3-dimensional manifold is expressed in terms of new coordinates, then there is a one-
to-one, differentiable mapx′i = x′i(x1, x2, x3) between these coordinates with Jacobian

J = ∂(x′1, x
′
2, x

′
3)

∂(x1, x2, x3)
= 1,

andA=A′J =A′ so that∫

V

ω=
∫

V

Adx1dx2dx3=
∫

V ′
A′ dx′1dx

′
2dx

′
3. (4.179)

This statement spells out the parameter independence of integrals over differential forms,
since parameterizations are essentially arbitrary. The rules governing integration of differ-
ential forms are defined on manifolds. These are continuous if we can move continuously
(actually we assume them differentiable) from point to point, oriented if the orientation of
curves generalizes to surfaces and volumes up to the dimension of the whole manifold. The
rules on differential forms are:

• If ω= aω1+ a′ω′1, with a, a′ real numbers, then
∫
S
ω= a

∫
S
ω1+ a′

∫
S
ω′1, whereS is

a compact, oriented, continuous manifold with boundary.

• If the orientation is reversed, then the integral
∫
S
ω changes sign.

Exterior Derivative

We now introduce theexterior derivative d of a functionf , a 0-form:

df ≡ ∂f

∂x
dx + ∂f

∂y
dy + ∂f

∂z
dz= ∂f

∂xi
dxi, (4.180)

generating a 1-formω1 = df , the differential off (or exterior derivative), the gradient
in standard vector analysis. Upon summing over the coordinates, we have used and will
continue to use Einstein’s summation convention. Applying the exterior derivatived to a
1-form we define

d(Adx +B dy +C dz)= dAdx + dB dy + dC dz (4.181)

with functionsA,B,C. This definition in conjunction withdf as just given ties vectors
to differential operators∂i = ∂

∂xi
. Similarly, we extendd to k-forms. However, applying

d twice gives zero,ddf = 0, because

d(df ) = d
∂f

∂x
dx + d

∂f

∂y
dy

=
(
∂2f

∂x2
dx + ∂2f

∂x ∂y
dy

)
dx +

(
∂2f

∂y∂x
dx + ∂2f

∂y2
dy

)
dy

=
(

∂2f

∂y ∂x
− ∂2f

∂x ∂y

)
dx dy = 0. (4.182)

This follows from the fact that in mixed partial derivatives their order does not matter
provided all functions are sufficiently differentiable. Similarly we can showddω1= 0 for
a 1-formω1, etc.
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The rules governing differential forms, withωk denoting ak-form, that we have used so
far are

• dx dx = 0= dy dy = dzdz, dx2
i = 0;

• dx dy =−dy dx, dxi dxj =−dxj dxi , i 
= j ,

• dx1dx2 · · ·dxk is totally antisymmetric in thedxi , i = 1,2, . . . , k.

• df = ∂f
∂xi

dxi;
• d(ωk +�k)= dωk + d�k , linearity;

• ddωk = 0.

Now we apply the exterior derivatived to products of differential forms, starting with
functions (0-forms). We have

d(fg)= ∂(fg)

∂xi
dxi =

(
f
∂g

∂xi
+ ∂f

∂xi
g

)
dxi = f dg+ dfg. (4.183)

If ω1= ∂g
∂xi

dxi is a 1-form andf is a function, then

d(fω1) = d

(
f
∂g

∂xi
dxi

)
= d

(
f
∂g

∂xi

)
dxi

=
∂
(
f

∂g
∂xi

)

∂xj
dxj dxi =

(
∂f

∂xj

∂g

∂xi
+ f

∂2g

∂xi ∂xj

)
dxj dxi

= dfω1+ f dω1, (4.184)

as expected. But ifω′1=
∂f
∂xj

dxj is another 1-form, then

d(ω1ω
′
1) = d

(
∂g

∂xi
dxi

∂f

∂xj
dxj

)
= d

(
∂g

∂xi

∂f

∂xj

)
dxi dxj

=
∂
(

∂g
∂xi

∂f
∂xj

)

∂xk
dxk dxi dxj

= ∂2g

∂xi∂xk
dxk dxi

∂f

∂xj
dxj −

∂g

∂xi
dxi

∂2f

∂xj ∂xk
dxk dxj

= dω1ω
′
1−ω1dω

′
1. (4.185)

This proof is valid for more general 1-formsω = fi dxi with functionsfi . In general,
therefore, we define fork-forms:

d(ωkω
′
k)= (dωk)ω

′
k + (−1)kωk(dω

′
k). (4.186)

In general, the exterior derivative of ak-form is a(k + 1)-form.
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Example 4.8.3 POTENTIAL ENERGY

As an application in two dimensions (for simplicity), consider the potentialV (r), a 0-form,
anddV , its exterior derivative. IntegratingV along an oriented pathC from r1 to r2 gives

V (r2)− V (r1)=
∫

C

dV =
∫

C

(
∂V

∂x
dx + ∂V

∂y
dy

)
=
∫

C

∇V · dr , (4.187)

where the last integral is the standard formula for the potential energy difference that forms
part of the energy conservation theorem. The path and parameterization independence are
manifest in this special case. �

Pullbacks

If a linear mapL2 from theuv-plane to thexy-plane has the form

x = au+ bv+ c, y = eu+ f v+ g, (4.188)

oriented polygons in theuv-plane are mapped onto similar polygons in thexy-plane, pro-
vided the determinantaf − be of the mapL2 is nonzero. The 2-form

dx dy = (a du+ b dv)(e du+ f dv)= (af − be)dudv (4.189)

can be pulled back from thexy- to theuv-plane. That is to say, an integral over a simply
connected surfaceS becomes

∫

L2(S)

dx dy = (af − be)

∫

S

dudv, (4.190)

and(af − be)dudv is the pullback ofdx dy, opposite to the direction of the mapL2 from
theuv-plane to thexy-plane. Of course, the determinantaf − be of the mapL2 is simply
the Jacobian, generated without effort by the differential forms in Eq. (4.189).

Similarly, a linear mapL3 from theu1u2u3-space to thex1x2x3-space

xi = aijuj + bi, i = 1,2,3, (4.191)

automatically generates its Jacobian from the 3-form

dx1dx2dx3 =
( 3∑

j=1

a1j duj

)( 3∑

j=1

a2j duj

)( 3∑

j=1

a3j duj

)

= (a11a22a33− a12a21a33± · · · )du1du2du3

= det



a11 a12 a13
a21 a22 a23
a31 a32 a33


du1du2du3. (4.192)

Thus, differential forms generate the rules governing determinants.
Given two linear maps in a row, it is straightforward to prove that the pullback under

a composed map is the pullback of the pullback. This theorem is the differential-forms
analog of matrix multiplication.
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Let us now consider a curveC defined by a parametert in contrast to a curve defined
by an equation. For example, the circle{(cost,sint);0≤ t ≤ 2π} is a parameterization
by t , whereas the circle{(x, y);x2+ y2= 1} is a definition by an equation. Then the line
integral

∫

C

[
A(x,y)dx +B(x, y) dy

]
=
∫ tf

ti

[
A
dx

dt
+B

dy

dt

]
dt (4.193)

for continuous functionsA,B,dx/dt, dy/dt becomes a one-dimensional integral over the
oriented intervalti ≤ t ≤ tf . Clearly, the 1-form[A dx

dt
+B

dy
dt
]dt on thet-line is obtained

from the 1-formAdx + B dy on thexy-plane via the mapx = x(t), y = y(t) from the
t-line to the curveC in thexy-plane. The 1-form[A dx

dt
+B

dy
dt
]dt is called the pullback of

the 1-formAdx + B dy under the mapx = x(t), y = y(t). Using pullbacks we can show
that integrals over 1-forms are independent of the parameterization of the path.

In this sense, the differential quotientdy
dx

can be considered as the coefficient ofdx in the
pullback ofdy under the functiony = f (x), or dy = f ′(x) dx. This concept of pullback
readily generalizes to maps in three or more dimensions and tok-forms with k > 1. In
particular, the chain rule can be seen to be a pullback: If

yi = fi(x1, x2, . . . , xn), i = 1,2, . . . , l and

zj = gj (y1, y2, . . . , yl), j = 1,2, . . . ,m (4.194)

are differentiable maps fromRn→ Rl andRl → Rm, then the composed mapRn→ Rm

is differentiable and the pullback of anyk-form under the composed map is equal to the
pullback of the pullback. This theorem is useful for establishing that integrals ofk-forms
are parameter independent.

Similarly, we define the differentialdf as the pullback of the 1-formdz under the func-
tion z= f (x, y):

dz= df = ∂f

∂x
dx + ∂f

∂y
dy. (4.195)

Example 4.8.4 STOKES’ THEOREM

As another application let us first sketch the standard derivation of the simplest version
of Stokes’ theorem for a rectangleS = [a ≤ x ≤ b, c ≤ y ≤ d] oriented counterclockwise,
with ∂S its boundary
∫

∂S

(Adx +B dy) =
∫ b

a

A(x, c) dx +
∫ d

c

B(b, y) dy +
∫ a

b

A(x,d) dx +
∫ c

d

B(a, y) dy

=
∫ d

c

[
B(b, y)−B(a, y)

]
dy −

∫ b

a

[
A(x,d)−A(x, c)

]
dx

=
∫ d

c

∫ b

a

∂B

∂x
dx dy −

∫ b

a

∫ d

c

∂A

∂y
dy dx

=
∫

S

(
∂B

∂x
− ∂A

∂y

)
dx dy, (4.196)
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which holds for any simply connected surfaceS that can be pieced together by rectangles.
Now we demonstrate the use of differential forms to obtain the same theorem (again in

two dimensions for simplicity):

d(Adx +B dy)= dAdx + dB dy

=
(
∂A

∂x
dx + ∂A

∂y
dy

)
dx +

(
∂B

∂x
dx + ∂B

∂y
dy

)
dy =

(
∂B

∂x
− ∂A

∂y

)
dx dy,

(4.197)

using the rules highlighted earlier. Integrating over a surfaceS and its boundary∂S, re-
spectively, we obtain

∫

∂S

(Adx +B dy)=
∫

S

d(Adx +B dy)=
∫

S

(
∂B

∂x
− ∂A

∂y

)
dx dy. (4.198)

Here contributions to the left-hand integral from inner boundaries cancel as usual because
they are oriented in opposite directions on adjacent rectangles. For each oriented inner
rectangle that makes up the simply connected surfaceS we have used,

∫

R

ddx =
∫

∂R

dx = 0. (4.199)

Note that the exterior derivative automatically generates thez component of the curl.
In three dimensions, Stokes’ theorem derives from the differential-form identity involv-

ing the vector potentialA and magnetic inductionB=∇×A,

d(Ax dx +Ay dy +Az dz)= dAx dx + dAy dy + dAz dz

=
(
∂Ax

∂x
dx + ∂Ax

∂y
dy + ∂Ax

∂z
dz

)
dx + · · ·

=
(
∂Az

∂y
− ∂Ay

∂z

)
dy dz+

(
∂Ax

∂z
− ∂Az

∂x

)
dzdx +

(
∂Ay

∂x
− ∂Ax

∂y

)
dx dy,

(4.200)

generating all components of the curl in three-dimensional space. This identity is integrated
over each oriented rectangle that makes up the simply connected surfaceS (which has no
holes, that is, where every curve contracts to a point of the surface) and then is summed
over all adjacent rectangles to yield the magnetic flux acrossS,

� =
∫

S

[Bx dy dz+By dzdx +Bz dx dy]

=
∫

∂S

[Ax dx +Ay dy +Az dz], (4.201)

or, in the standard notation of vector analysis (Stokes’ theorem, Chapter 1),
∫

S

B · da=
∫

S

(∇×A) · da=
∫

∂S

A · dr . (4.202)

�
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Example 4.8.5 GAUSS’ THEOREM

Consider Gauss’ law, Section 1.14. We integrate the electric densityρ = 1
ε0

∇ · E over
the volume of a single parallelepipedV = [a ≤ x ≤ b, c ≤ y ≤ d, e ≤ z ≤ f ] oriented by
dx dy dz (right-handed), the sidex = b of V is oriented bydy dz (counterclockwise, as
seen fromx > b), and so on. Using

Ex(b, y, z)−Ex(a, y, z)=
∫ b

a

∂Ex

∂x
dx, (4.203)

we have, in the notation of differential forms, summing over all adjacent parallelepipeds
that make up the volumeV ,

∫

∂V

Ex dy dz=
∫

V

∂Ex

∂x
dx dy dz. (4.204)

Integrating the electric flux (2-form) identity

d(Ex dy dz+Ey dzdx +Ez dx dy)= dEx dy dz+ dEy dzdx + dEz dx dy

=
(
∂Ex

∂x
+ ∂Ey

∂y
+ ∂Ez

∂z

)
dx dy dz (4.205)

across the simply connected surface∂V we have Gauss’ theorem,
∫

∂V

(Ex dy dz+Ey dzdx +Ez dx dy)=
∫

V

(
∂Ex

∂x
+ ∂Ey

∂y
+ ∂Ez

∂z

)
dx dy dz, (4.206)

or, in standard notation of vector analysis,
∫

∂V

E · da=
∫

V

∇ ·E d3r = q

ε0
. (4.207)

�

These examples are different cases of a single theorem on differential forms. To explain
why, let us begin with some terminology, a preliminarydefinition of a differentiable
manifold M : It is a collection of points (m-tuples of real numbers) that are smoothly (that
is, differentiably) connected with each other so that the neighborhood of each point looks
like a simply connected piece of anm-dimensional Cartesian space “close enough” around
the point and containing it. Here,m, which stays constant from point to point, is called the
dimension of the manifold. Examples are them-dimensional Euclidean spaceRm and the
m-dimensional sphere

Sm =
[(
x1, . . . , xm+1);

m+1∑

i=1

(
xi
)2= 1

]
.

Any surface with sharp edges, corners, or kinks is not a manifold in our sense, that
is, is not differentiable. In differential geometry, all movements, such as translation and
parallel displacement, are local, that is, are defined infinitesimally. If we apply the exterior
derivatived to a functionf (x1, . . . , xm) on M , we generate basic 1-forms:

df = ∂f

∂xi
dxi, (4.208)
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wherexi(P ) are coordinate functions. As before we haved(df )= 0 because

d(df ) = d

(
∂f

∂xi

)
dxi = ∂2f

∂xj ∂xi
dxj dxi

=
∑

j<i

(
∂2f

∂xj ∂xi
− ∂2f

∂xi ∂xj

)
dxj dxi = 0 (4.209)

because the order of derivatives does not matter. Any 1-form is a linear combinationω =∑
i ωi dx

i with functionsωi .

Generalized Stokes’ Theorem on Differential Forms

Letω be a continuous(k−1)-form in x1x2 · · ·xn-space defined everywhere on a compact,
oriented, differentiablek-dimensional manifoldS with boundary∂S in x1x2 · · ·xn-space.
Then ∫

∂S

ω=
∫

S

dω. (4.210)

Here

dω= d(Adx1dx2 · · ·dxk−1+ · · · )= dAdx1dx2 · · ·dxk−1+ · · · . (4.211)

The potential energy in Example 4.8.3 given this theorem for the potentialω= V , a 0-form;
Stokes’ theorem in Example 4.8.4 is this theorem for the vector potential 1-form

∑
i Ai dxi

(for Euclidean spacesdxi = dxi ); and Gauss’ theorem in Example 4.8.5 is Stokes’ theorem
for the electric flux 2-form in three-dimensional Euclidean space.

The method of integration by parts can be generalized to differential forms using
Eq. (4.186):

∫

S

dω1ω2=
∫

∂S

ω1ω2− (−1)k1

∫

S

ω1dω2. (4.212)

This is proved by integrating the identity

d(ω1ω2)= dω1ω2+ (−1)k1ω1dω2, (4.213)

with the integrated term
∫
S
d(ω1ω2)=

∫
∂S

ω1ω2.
Our next goal is to cast Sections 2.10 and 2.11 in the language of differential forms. So

far we have worked in two- or three-dimensional Euclidean space.

Example 4.8.6 RIEMANN MANIFOLD

Let us look at the curved Riemann space–time of Sections 2.10–2.11 and reformulate
some of this tensor analysis in curved spaces in the language of differential forms. Re-
call that dishinguishing between upper and lower indices is important here. The metricgij
in Eq. (2.123) can be written in terms of tangent vectors, Eq. (2.114), as follows:

gij =
∂xl

∂q i

∂xl

∂qj
, (4.214)
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where the sum over the indexl denotes the inner product of the tangent vectors. (Here
we continue to use Einstein’s summation convention over repeated indices. As before, the
metric tensor is used to raise and lower indices.) The key concept of connection involves
the Christoffel symbols, which we address first. The exterior derivative of a tangent vector
can be expanded in terms of the basis of tangent vectors (compare Eq. (2.131a)),

d

(
∂xl

∂q i

)
= Ŵk

ij

∂xl

∂qk
dqj , (4.215)

thus introducing the Christoffel symbols of the second kind. Applyingd to Eq. (4.214) we
obtain

dgij =
∂gij

∂qm
dqm = d

(
∂xl

∂q i

)
∂xl

∂qj
+ ∂xl

∂q i
d

(
∂xl

∂qj

)
(4.216)

=
(
Ŵk

im

∂xl

∂qk

∂xl

∂qj
+ Ŵk

jm

∂xl

∂q i

∂xl

∂qk

)
dqm =

(
Ŵk

imgkj + Ŵk
jmgik

)
dqm.

Comparing the coefficients ofdqm yields

∂gij

∂qm
= Ŵk

imgkj + Ŵk
jmgik. (4.217)

Using the Christoffel symbol of the first kind,

[ij,m] = gkmŴ
k
ij , (4.218)

we can rewrite Eq. (4.217) as

∂gij

∂qm
= [im, j ] + [jm, i], (4.219)

which corresponds to Eq. (2.136) and implies Eq. (2.137). We check that

[ij,m] = 1

2

(
∂gim

∂qj
+ ∂gjm

∂q i
− ∂gij

∂qm

)
(4.220)

is the unique solution of Eq. (4.219) and that

Ŵk
ij = gmk[ij,m] = 1

2
gmk

(
∂gim

∂qj
+ ∂gjm

∂q i
− ∂gij

∂qm

)
(4.221)

follows. �

Hodge ∗ Operator

The differentialsdxi , i = 1,2, . . . ,m, form a basis of a vector space that is (seen to be)
dual to the derivatives∂i = ∂

∂xi
; they are basic 1-forms. For example, the vector spaceV =

{(a1, a2, a3)} is dual to the vector space of planes (linear functionsf ) in three-dimensional
Euclidean spaceV∗ = {f ≡ a1x1+ a2x2+ a3x3− d = 0}. The gradient

∇f =
(
∂f

∂x1
,
∂f

∂x2
,
∂f

∂x3

)
= (a1, a2, a3) (4.222)
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provides a one-to-one, differentiable map fromV∗ to V . Such dual relationships are gener-
alized by the Hodge∗ operator, based on the Levi-Civita symbol of Section 2.9.

Let the unit vectorŝxi be an oriented orthonormal basis of three-dimensional Euclidean
space. Then the Hodge∗ of scalars is defined by the basis element

∗1≡ 1

3!ε
ijk x̂i x̂j x̂k = x̂1x̂2x̂3, (4.223)

which corresponds to(x̂1× x̂2) · x̂3 in standard vector notation. Herex̂i x̂j x̂k is the totally
antisymmetric exterior product of the unit vectors that corresponds to(x̂i × x̂j ) · x̂k in
standard vector notation. For vectors,∗ is defined for the basis of unit vectors as

∗x̂i ≡
1

2!εi
jk x̂j x̂k. (4.224)

In particular,

∗x̂1= x̂2x̂3, ∗x̂2= x̂3x̂1, ∗x̂3= x̂1x̂2. (4.225)

For oriented areas,∗ is defined on basis area elements as

∗(x̂i x̂j )≡ εkij x̂k, (4.226)

so

∗(x̂1x̂2) = ε3
12x̂3= x̂3, ∗(x̂1x̂3)= ε2

13x̂2=−x̂2,

∗(x̂2x̂3) = ε1
23x̂1= x̂1. (4.227)

For volumes,∗ is defined as

∗(x̂1x̂2x̂3)≡ ε123= 1. (4.228)

Example 4.8.7 CROSS PRODUCT OF VECTORS

The exterior product of two vectors

a=
3∑

i=1

ai x̂i, b=
3∑

i=1

bi x̂i (4.229)

is given by

ab=
( 3∑

i=1

ai x̂i

)( 3∑

j=1

bi x̂j

)
=
∑

i<j

(
aibj − ajbi

)
x̂i x̂j , (4.230)

whereas Eq. (4.224) implies that

∗(ab)= a× b. (4.231)

�

Next, let us analyze Sections 2.1–2.2 on curvilinear coordinates in the language of dif-
ferential forms.
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Example 4.8.8 LAPLACIAN IN ORTHOGONAL COORDINATES

Consider orthogonal coordinates where the metric (Eq. (2.5)) leads to length elements

dsi = hi dqi, not summed. (4.232)

Here thedqi are ordinary differentials. The 1-forms associated with the directionsq̂i are

εi = hidqi, not summed. (4.233)

Then the gradient is defined by the 1-form

df = ∂f

∂qi
dqi =

(
1

hi

∂f

∂qi

)
εi . (4.234)

We apply the hodge star operator todf , generating the 2-form

∗df =
(

1

hi

∂f

∂qi

)
∗ εi =

(
1

h1

∂f

∂q1

)
ε2ε3+

(
1

h2

∂f

∂q2

)
ε3ε1+

(
1

h3

∂f

∂q3

)
ε1ε2

=
(
h2h3

h1

∂f

∂q1

)
dq2dq3+

(
h1h3

h2

∂f

∂q2

)
dq3dq1+

(
h1h2

h3

∂f

∂q3

)
dq1dq2.

(4.235)

Applying another exterior derivatived , we get the Laplacian

d(∗df ) = ∂

∂q1

(
h2h3

h1

∂f

∂q1

)
dq1dq2dq3+

∂

∂q2

(
h1h3

h2

∂f

∂q2

)
dq2dq1dq2dq3

+ ∂

∂q3

(
h1h2

h3

∂f

∂q3

)
dq3dq1dq2dq3

= 1

h1h2h3

[
∂

∂q1

(
h2h3

h1

∂f

∂q1

)
+ ∂

∂q2

(
h1h3

h2

∂f

∂q2

)
+ ∂

∂q3

(
h1h2

h3

∂f

∂q3

)]

· ε1ε2ε3=∇2f dq1dq2dq3. (4.236)

Dividing by the volume element gives Eq. (2.22). Recall that the volume elementsdx dy dz

andε1ε2ε3 must be equal becauseεi anddx, dy, dz are orthonormal 1-forms and the map
from thexyz to theqi coordinates is one-to-one. �

Example 4.8.9 MAXWELL’S EQUATIONS

We now work in four-dimensional Minkowski space, the homogeneous, flat space–time of
special relativity, to discuss classical electrodynamics in terms of differential forms. We
start by introducing the electromagnetic field 2-form (field tensor in standard relativistic
notation):

F = −Ex dt dx −Ey dt dy −Ez dt dz+Bx dy dz+By dzdx +Bz dx dy

= 1

2
Fµν dx

µ dxν, (4.237)
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which contains the electric 1-formE = Ex dx + Ey dy + Ez dz and the magnetic flux
2-form. Here, terms with 1-forms in opposite order have been combined. (For Eq. (4.237)
to be valid, the magnetic induction is in units ofc; that is,Bi → cBi , with c the velocity of
light; or we work in units wherec = 1. Also,F is in units of 1/ε0, the dielectric constant
of the vacuum. Moreover, the vector potential is defined asA0 = ε0φ, with the nonstatic
electric potentialφ andA1= Ax

µ0c
, . . . ; see Section 4.6 for more details.) The field 2-form

F encompasses Faraday’s induction law that a moving charge is acted on by magnetic
forces.

Applying the exterior derivatived generates Maxwell’s homogeneous equations auto-
matically fromF :

dF = −
(
∂Ex

∂y
dy + ∂Ex

∂z
dz

)
dt dx −

(
∂Ey

∂x
dx + ∂Ey

∂z
dz

)
dt dy

−
(
∂Ez

∂x
dx + ∂Ez

∂y
dy

)
dt dz+

(
∂Bx

∂x
dx + ∂Bx

∂t
dt

)
dy dz

+
(
∂By

∂t
dt + ∂By

∂y
dy

)
dzdx +

(
∂Bz

∂t
dt + ∂Bz

∂z
dz

)
dx dy

=
(
−∂Ex

∂y
+ ∂Ey

∂x
+ ∂Bz

∂t

)
dt dx dy +

(
−∂Ex

∂z
+ ∂Ez

∂x
− ∂By

∂t

)
dt dx dz

+
(
−∂Ey

∂z
+ ∂Ez

∂y
+ ∂Bx

∂t

)
dt dy dz= 0 (4.238)

which, in standard notation of vector analysis, takes the familiar vector form of Maxwell’s
homogeneous equations,

∇×E+ ∂B
∂t
= 0. (4.239)

SincedF = 0, that is, there is no driving term so thatF is closed, there must be a 1-form
ω=Aµ dxµ so thatF = dω. Now,

dω= ∂νAµ dxν dxµ, (4.240)

which, in standard notation, leads to the conventional relativistic form of the electromag-
netic field tensor,

Fµν = ∂µAν − ∂νAµ. (4.241)

Maxwell’s homogeneous equations,dF = 0, are thus equivalent to∂νFµν = 0.
In order to derive similarly the inhomogeneous Maxwell’s equations, we introduce the

dual electromagnetic field tensor

F̃µν = 1

2
εµναβFαβ , (4.242)

and, in terms of differential forms,

∗F = ∗
(
Fµν dx

µ dxν
)
= Fµν ∗

(
dxµ dxν

)
= 1

2
Fµνε

µν
αβ dx

α dxβ . (4.243)
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Applying the exterior derivative yields

d(∗F)= 1

2
εµναβ(∂γFµν) dx

γ dxα dxβ , (4.244)

the left-hand side of Maxwell’s inhomogeneous equations, a 3-form. Its driving term is the
dual of the electric current density, a 3-form:

∗J = Jα
(
∗dxα

)
= Jαε

α
µνλ dx

µ dxν dxλ

= ρ dx dy dz− Jx dt dy dz− Jy dt dz dx − Jz dt dx dy. (4.245)

Altogether Maxwell’s inhomogeneous equations take the elegant form

d(∗F)= ∗J. (4.246)

�

The differential-form framework has brought considerable unification to vector algebra
and to tensor analysis on manifolds more generally, such as uniting Stokes’ and Gauss’
theorems and providing an elegant reformulation of Maxwell’s equations and an efficient
derivation of the Laplacian in curved orthogonal coordinates, among others.

Exercises

4.8.1 Evaluate the 1-forma dx + 2b dy + 4c dz on the line segmentPQ, with P = (3,5,7),
Q= (7,5,3).

4.8.2 If the force field is constant and moving a particle from the origin to(3,0,0) requiresa
units of work, from(−1,−1,0) to (−1,1,0) takesb units of work, and from(0,0,4)
to (0,0,5) c units of work, find the 1-form of the work.

4.8.3 Evaluate the flow described by the 2-formdx dy+2dy dz+3dzdx across the oriented
trianglePQR with corners at

P = (3,1,4), Q= (−2,1,4), R = (1,4,1).

4.8.4 Are the points, in this order,

(0,1,1), (3,−1,−2), (4,2,−2), (−1,0,1)

coplanar, or do they form an oriented volume (right-handed or left-handed)?

4.8.5 Write Oersted’s law,
∫

∂S

H · dr =
∫

S

∇×H · da∼ I,

in differential form notation.

4.8.6 Describe the electric field by the 1-formE1dx+E2dy+E3dz and the magnetic induc-
tion by the 2-formB1dy dz+B2dzdx+B3dx dy. Then formulate Faraday’s induction
law in terms of these forms.
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4.8.7 Evaluate the 1-form

x dy

x2+ y2
− y dx

x2+ y2

on the unit circle about the origin oriented counterclockwise.

4.8.8 Find the pullback ofdx dz underx = ucosv, y = u− v, z= usinv.

4.8.9 Find the pullback of the 2-formdy dz+ dzdx + dx dy under the mapx = sinθ cosϕ,
y = sinθ sinϕ, z= cosθ .

4.8.10 Parameterize the surface obtained by rotating the circle(x − 2)2+ z2= 1, y = 0, about
thez-axis in a counterclockwise orientation, as seen from outside.

4.8.11 A 1-form Adx + B dy is defined asclosedif ∂A
∂y
= ∂B

∂x
. It is calledexact if there is a

functionf so that∂f
∂x
= A and ∂f

∂y
= B. Determine which of the following 1-forms are

closed, or exact, and find the corresponding functionsf for those that are exact:

y dx + x dy,
y dx + x dy

x2+ y2
,

[
ln(xy)+ 1

]
dx + x

y
dy,

− y dx

x2+ y2
+ x dy

x2+ y2
, f (z) dz with z= x + iy.

4.8.12 Show that
∑n

i=1x
2
i = a2 defines a differentiable manifold of dimensionD = n− 1 if

a 
= 0 andD = 0 if a = 0.

4.8.13 Show that the set of orthogonal 2× 2 matrices form a differentiable manifold, and
determine its dimension.

4.8.14 Determine the value of the 2-formAdy dz + B dzdx + C dx dy on a parallelogram
with sidesa,b.

4.8.15 Prove Lorentz invariance of Maxwell’s equations in the language of differential forms.

Additional Readings
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cludeContemporary Crystallography. New York: McGraw-Hill (1970);Crystal Structure Analysis. New York:
Krieger (1979) (reprint, 1960); andIntroduction to Crystal Geometry. New York: Krieger (1977) (reprint,
1971).

Burns, G., and A. M. Glazer,Space Groups for Solid-State Scientists. New York: Academic Press (1978). A well-
organized, readable treatment of groups and their application to the solid state.

de-Shalit, A., and I. Talmi,Nuclear Shell Model. New York: Academic Press (1963). We adopt the Condon–
Shortley phase conventions of this text.

Edmonds, A. R.,Angular Momentum in Quantum Mechanics. Princeton, NJ: Princeton University Press (1957).

Edwards, H. M.,Advanced Calculus: A Differential Forms Approach. Boston: Birkhäuser (1994).

Falicov, L. M., Group Theory and Its Physical Applications. Notes compiled by A. Luehrmann. Chicago: Uni-
versity of Chicago Press (1966). Group theory, with an emphasis on applications to crystal symmetries and
solid-state physics.
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Greiner, W., and B. Müller,Quantum Mechanics Symmetries. Berlin: Springer (1989). We refer to this textbook
for more details and numerous exercises that are worked out in detail.

Hamermesh, M.,Group Theory and Its Application to Physical Problems. Reading, MA: Addison-Wesley (1962).
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continuous groups are treated, with Lie algebra included. A wealth of applications to atomic and nuclear
physics.

Hassani, S.,Foundations of Mathematical Physics. Boston: Allyn and Bacon (1991).

Heitler, W.,The Quantum Theory of Radiation, 2nd ed. Oxford: Oxford University Press (1947). Reprinted, New
York: Dover (1983).

Higman, B.,Applied Group-Theoretic and Matrix Methods. Oxford: Clarendon Press (1955). A rather complete
and unusually intelligible development of matrix analysis and group theory.

Jackson, J. D.,Classical Electrodynamics, 3rd ed. New York: Wiley (1998).

Messiah, A.,Quantum Mechanics, Vol. II. Amsterdam: North-Holland (1961).

Panofsky, W. K. H., and M. Phillips,Classical Electricity and Magnetism, 2nd ed. Reading, MA: Addison-Wesley
(1962). The Lorentz covariance of Maxwell’s equations is developed for both vacuum and material media.
Panofsky and Phillips use contravariant and covariant tensors.

Park, D., Resource letter SP-1 on symmetry in physics.Am. J. Phys.36: 577–584 (1968). Includes a large selection
of basic references on group theory and its applications to physics: atoms, molecules, nuclei, solids, and
elementary particles.

Ram, B., Physics of theSU(3) symmetry model.Am. J. Phys.35: 16 (1967). An excellent discussion of the
applications ofSU(3) to the strongly interacting particles (baryons). For a sequel to this see R. D. Young,
Physics of the quark model.Am. J. Phys.41: 472 (1973).

Rose, M. E.,Elementary Theory of Angular Momentum. New York: Wiley (1957). Reprinted. New York: Dover
(1995). As part of the development of the quantum theory of angular momentum, Rose includes a detailed and
readable account of the rotation group.

Wigner, E. P.,Group Theory and Its Application to the Quantum Mechanics of Atomic Spectra(translated by
J. J. Griffin). New York: Academic Press (1959). This is the classic reference on group theory for the physicist.
The rotation group is treated in considerable detail. There is a wealth of applications to atomic physics.



CHAPTER 5

INFINITE SERIES

5.1 FUNDAMENTAL CONCEPTS

Infinite series, literally summations of an infinite number of terms, occur frequently in both
pure and applied mathematics. They may be used by the pure mathematician to define func-
tions as a fundamental approach to the theory of functions, as well as for calculating ac-
curate values of transcendental constants and transcendental functions. In the mathematics
of science and engineering infinite series are ubiquitous, for they appear in the evaluation
of integrals (Sections 5.6 and 5.7), in the solution of differential equations (Sections 9.5
and 9.6), and as Fourier series (Chapter 14) and compete with integral representations for
the description of a host of special functions (Chapters 11, 12, and 13). In Section 16.3 the
Neumann series solution for integral equations provides one more example of the occur-
rence and use of infinite series.

Right at the start we face the problem of attaching meaning to the sum of an infinite
number of terms. The usual approach is by partial sums. If we have an infinite sequence of
termsu1, u2, u3, u4, u5, . . . , we define theith partial sum as

si =
i∑

n=1

un. (5.1)

This is a finite summation and offers no difficulties. If the partial sumssi converge to a
(finite) limit as i→∞,

lim
i→∞

si = S, (5.2)

the infinite series
∑∞

n=1un is said to beconvergentand to have the valueS. Note that we
reasonably, plausibly, but still arbitrarilydefine the infinite series as equal toS and that a
necessary condition for this convergence to a limit is that limn→∞ un = 0. This condition,
however, is not sufficient to guarantee convergence. Equation (5.2) is usually written in
formal mathematical notation:

321
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The condition for the existence of a limitS is that for eachε > 0, there is a fixed
N =N(ε) such that

|S − si |< ε, for i > N.

This condition is often derived from the Cauchy criterion applied to the partial sumssi .
TheCauchy criterion is:

A necessary and sufficient condition that a sequence(si) converge is that for eachε > 0
there is a fixed numberN such that

|sj − si |< ε, for all i, j > N.

This means that the individual partial sums must cluster together as we move far out in
the sequence.

The Cauchy criterion may easily be extended to sequences of functions. We see it in this
form in Section 5.5 in the definition of uniform convergence and in Section 10.4 in the
development of Hilbert space. Our partial sumssi may not converge to a single limit but
may oscillate, as in the case

∞∑

n=1

un = 1− 1+ 1− 1+ 1+ · · · − (−1)n + · · · .

Clearly, si = 1 for i odd butsi = 0 for i even. There is no convergence to a limit, and
series such as this one are labeledoscillatory. Whenever the sequence of partial sums
diverges (approaches±∞), the infinite series is said todiverge. Often the termdivergent
is extended to include oscillatory series as well. Because we evaluate the partial sums
by ordinary arithmetic, the convergent series, defined in terms of a limit of the partial
sums, assumes a position of supreme importance. Two examples may clarify the nature of
convergence or divergence of a series and will also serve as a basis for a further detailed
investigation in the next section.

Example 5.1.1 THE GEOMETRIC SERIES

The geometrical sequence, starting witha and with a ratior (= an+1/an independent ofn),
is given by

a + ar + ar2+ ar3+ · · · + arn−1+ · · · .

Thenth partial sum is given by1

sn = a
1− rn

1− r
. (5.3)

Taking the limit asn→∞,

lim
n→∞

sn =
a

1− r
, for |r|< 1. (5.4)

1Multiply and dividesn =
∑n−1

m=0 ar
m by 1− r .
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Hence, by definition, the infinite geometric series converges for|r|< 1 and is given by

∞∑

n=1

arn−1= a

1− r
. (5.5)

On the other hand, if|r| ≥ 1, the necessary conditionun→ 0 is not satisfied and the infinite
series diverges. �

Example 5.1.2 THE HARMONIC SERIES

As a second and more involved example, we consider the harmonic series

∞∑

n=1

1

n
= 1+ 1

2
+ 1

3
+ 1

4
+ · · · + 1

n
+ · · · . (5.6)

We have the limn→∞ un = limn→∞ 1/n= 0, but this is not sufficient to guarantee conver-
gence. If we group the terms (no change in order) as

1+ 1
2 +

(1
3 + 1

4

)
+
(1

5 + 1
6 + 1

7 + 1
8

)
+
(1

9 + · · · + 1
16

)
+ · · · , (5.7)

each pair of parentheses enclosesp terms of the form

1

p+ 1
+ 1

p+ 2
+ · · · + 1

p+ p
>

p

2p
= 1

2
. (5.8)

Forming partial sums by adding the parenthetical groups one by one, we obtain

s1= 1, s4 >
5

2
,

s2=
3

2
, s5 >

6

2
, · · ·

s3 >
4

2
, sn >

n+ 1

2
.

(5.9)

The harmonic series considered in this way is certainly divergent.2 An alternate and inde-
pendent demonstration of its divergence appears in Section 5.2. �

If the un > 0 are monotonically decreasing to zero, that is,un > un+1 for all n, then∑
n un is converging toS if, and only if,sn − nun converges toS. As the partial sumssn

converge toS, this theorem implies thatnun→ 0, for n→∞.

To prove thistheorem, we start by concluding from 0< un+1 < un and

sn+1− (n+ 1)un+1= sn − nun+1= sn − nun + n(un − un+1) > sn − nun

that sn − nun increases asn→∞. As a consequence ofsn − nun < sn ≤ S, sn − nun
converges to a values ≤ S. Deleting the tail of positive termsui − un from i = ν + 1 ton,

2The (finite) harmonic series appears in an interesting note on the maximum stable displacement of a stack of coins. P. R. John-
son, The Leaning Tower of Lire.Am. J. Phys.23: 240 (1955).
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we infer fromsn− nun > u0+ (u1− un)+ · · · + (uν − un)= sν − νun thatsn− nun ≥ sν
for n→∞. Hence alsos ≥ S, sos = S andnun→ 0.

When this theorem is applied to theharmonic series
∑

n
1
n

with n 1
n
= 1 it implies that

it does not converge; it diverges to+∞.

Addition, Subtraction of Series

If we have two convergent series
∑

n un → s and
∑

n vn → S, their sum and difference
will also converge tos ± S because their partial sums satisfy

∣∣sj ± Sj − (si ± Si)
∣∣=

∣∣sj − si ± (Sj − Si)
∣∣≤ |sj − si | + |Sj − Si |< 2ǫ

using the triangle inequality

|a| − |b| ≤ |a + b| ≤ |a| + |b|
for a = sj − si, b= Sj − Si .

A convergent series
∑

n un→ S may be multiplied termwise by a real numbera. The
new series will converge toaS because

|asj − asi | =
∣∣a(sj − si)

∣∣= |a||sj − si |< |a|ǫ.
This multiplication by a constant can be generalized to a multiplication by termscn of a
bounded sequence of numbers.

If
∑

n un converges toS and0< cn ≤M are bounded, then
∑

n uncn is convergent. If∑
n un is divergent andcn >M > 0, then

∑
n uncn diverges.

To prove thistheoremwe takei, j sufficiently large so that|sj − si |< ǫ. Then

j∑

i+1

uncn ≤M

j∑

i+1

un =M|sj − si |<Mǫ.

The divergent case follows from
∑

n

uncn >M
∑

n

un→∞.

Using the binomial theorem3 (Section 5.6), we may expand the function(1+ x)−1:

1

1+ x
= 1− x + x2− x3+ · · · + (−x)n−1+ · · · . (5.10)

If we let x→ 1, this series becomes

1− 1+ 1− 1+ 1− 1+ · · · , (5.11)

a series that we labeled oscillatory earlier in this section. Although it does not converge
in the usual sense, meaning can be attached to this series. Euler, for example, assigned a
value of 1/2 to this oscillatory sequence on the basis of the correspondence between this
series and the well-defined function(1+ x)−1. Unfortunately, such correspondence be-
tween series and function is not unique, and this approach must be refined. Other methods

3Actually Eq. (5.10) may be verified by multiplying both sides by 1+ x.



5.2 Convergence Tests 325

of assigning a meaning to a divergent or oscillatory series, methods of defining a sum,
have been developed. See G. H. Hardy,Divergent Series, Chelsea Publishing Co. 2nd ed.
(1992). In general, however, this aspect of infinite series is of relatively little interest to the
scientist or the engineer. An exception to this statement, the very important asymptotic or
semiconvergent series, is considered in Section 5.10.

Exercises

5.1.1 Show that
∞∑

n=1

1

(2n− 1)(2n+ 1)
= 1

2
.

Hint. Show (by mathematical induction) thatsm =m/(2m+ 1).

5.1.2 Show that
∞∑

n=1

1

n(n+ 1)
= 1.

Find the partial sumsm and verify its correctness by mathematical induction.
Note. The method of expansion in partial fractions, Section 15.8, offers an alternative
way of solving Exercises 5.1.1 and 5.1.2.

5.2 CONVERGENCE TESTS

Although nonconvergent series may be useful in certain special cases (compare Sec-
tion 5.10), we usually insist, as a matter of convenience if not necessity, that our series be
convergent. It therefore becomes a matter of extreme importance to be able to tell whether
a given series is convergent. We shall develop a number of possible tests, starting with the
simple and relatively insensitive tests and working up to the more complicated but quite
sensitive tests. For the present let us consider aseries of positive termsan ≥ 0, postponing
negative terms until the next section.

Comparison Test

If term by term a series of terms 0≤ un ≤ an, in which thean form a convergent series,
the series

∑
n un is also convergent. Ifun ≤ an for all n, then

∑
n un ≤

∑
n an and

∑
n un

therefore isconvergent. If term by term a series of termsvn ≥ bn, in which thebn, form a
divergent series, the series

∑
n vn is alsodivergent. Note that comparisons ofun with bn

or vn with an yield no information. Ifvn ≥ bn for all n, then
∑

n vn ≥
∑

n bn and
∑

n vn
therefore is divergent.

For the convergent seriesan we already have the geometric series, whereas the harmonic
series will serve as the divergent comparison seriesbn. As other series are identified as
either convergent or divergent, they may be used for the known series in this comparison
test. All tests developed in this section are essentially comparison tests. Figure 5.1 exhibits
these tests and the interrelationships.
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FIGURE 5.1 Comparison tests.

Example 5.2.1 A DIRICHLET SERIES

Test
∑∞

n=1n
−p,p = 0.999, for convergence. Sincen−0.999> n−1 andbn = n−1 forms the

divergent harmonic series, the comparison test shows that
∑

n n
−0.999 is divergent. Gener-

alizing,
∑

n n
−p is seen to be divergent for allp ≤ 1 but convergent forp > 1 (see Exam-

ple 5.2.3). �

Cauchy Root Test

If (an)
1/n ≤ r < 1 for all sufficiently largen, with r independent ofn, then

∑
n an is

convergent. If(an)1/n ≥ 1 for all sufficiently largen, then
∑

n an is divergent.
The first part of this test is verified easily by raising(an)1/n ≤ r to thenth power. We

get

an ≤ rn < 1.

Sincern is just thenth term in a convergent geometric series,
∑

n an is convergent by the
comparison test. Conversely, if(an)1/n ≥ 1, thenan ≥ 1 and the series must diverge. This
root test is particularly useful in establishing the properties of power series (Section 5.7).

D’Alembert (or Cauchy) Ratio Test

If an+1/an ≤ r < 1 for all sufficiently largen and r is independent ofn, then
∑

n an is
convergent. Ifan+1/an ≥ 1 for all sufficiently largen, then

∑
n an is divergent.

Convergence is proved by direct comparison with the geometric series(1+r+r2+· · · ).
In the second part,an+1≥ an and divergence should be reasonably obvious. Although not
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quite so sensitive as the Cauchy root test, this D’Alembert ratio test is one of the easiest to
apply and is widely used. An alternate statement of the ratio test is in the form of a limit: If

lim
n→∞

an+1

an
< 1, convergence,

> 1, divergence, (5.12)

= 1, indeterminate.

Because of this final indeterminate possibility, the ratio test is likely to fail at crucial points,
and more delicate, sensitive tests are necessary. The alert reader may wonder how this
indeterminacy arose. Actually it was concealed in the first statement,an+1/an ≤ r < 1.
We might encounteran+1/an < 1 for all finite n but be unable to choose anr < 1 and
independent of nsuch thatan+1/an ≤ r for all sufficiently largen. An example is provided
by the harmonic series

an+1

an
= n

n+ 1
< 1. (5.13)

Since

lim
n→∞

an+1

an
= 1, (5.14)

no fixed ratior < 1 exists and the ratio test fails.

Example 5.2.2 D’ALEMBERT RATIO TEST

Test
∑

n n/2
n for convergence.

an+1

an
= (n+ 1)/2n+1

n/2n
= 1

2
· n+ 1

n
. (5.15)

Since

an+1

an
≤ 3

4
for n≥ 2, (5.16)

we have convergence. Alternatively,

lim
n→∞

an+1

an
= 1

2
(5.17)

and again — convergence. �

Cauchy (or Maclaurin) Integral Test

This is another sort of comparison test, in which we compare a series with an integral.
Geometrically, we compare the area of a series of unit-width rectangles with the area under
a curve.
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FIGURE 5.2 (a) Comparison of integral and sum-blocks leading.
(b) Comparison of integral and sum-blocks lagging.

Let f (x) be a continuous,monotonic decreasing functionin which f (n) = an. Then∑
n an converges if

∫∞
1 f (x)dx is finite and diverges if the integral is infinite. For theith

partial sum,

si =
i∑

n=1

an =
i∑

n=1

f (n). (5.18)

But

si >

∫ i+1

1
f (x)dx (5.19)

from Fig. 5.2a,f (x) being monotonic decreasing. On the other hand, from Fig. 5.2b,

si − a1 <

∫ i

1
f (x)dx, (5.20)

in which the series is represented by the inscribed rectangles. Taking the limit asi→∞,
we have

∫ ∞

1
f (x)dx ≤

∞∑

n=1

an ≤
∫ ∞

1
f (x)dx + a1. (5.21)

Hence the infinite series converges or diverges as the corresponding integral converges or
diverges. This integral test is particularly useful in setting upper and lower bounds on the
remainder of a series after some number of initial terms have been summed. That is,

∞∑

n=1

an =
N∑

n=1

an +
∞∑

n=N+1

an,

where

∫ ∞

N+1
f (x)dx ≤

∞∑

n=N+1

an ≤
∫ ∞

N+1
f (x)dx + aN+1.
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To free the integral test from the quite restrictive requirement that the interpolating func-
tion f (x) be positive and monotonic, we show for any functionf (x) with a continuous
derivative that

Nf∑

n=Ni+1

f (n)=
∫ Nf

Ni

f (x)dx +
∫ Nf

Ni

(
x − [x]

)
f ′(x) dx (5.22)

holds. Here[x] denotes the largest integer belowx, sox−[x] varies sawtoothlike between
0 and 1. To derive Eq. (5.22) we observe that

∫ Nf

Ni

xf ′(x) dx =Nf f (Nf )−Nif (Ni)−
∫ Nf

Ni

f (x)dx, (5.23)

using integration by parts. Next we evaluate the integral

∫ Nf

Ni

[x]f ′(x) dx =
Nf−1∑

n=Ni

n

∫ n+1

n

f ′(x) dx =
Nf−1∑

n=Ni

n
{
f (n+ 1)− f (n)

}

= −
Nf∑

n=Ni+1

f (n)−Nif (Ni)+Nf f (Nf ). (5.24)

Subtracting Eq. (5.24) from (5.23) we arrive at Eq. (5.22). Note thatf (x) may go up or
down and even change sign, so Eq. (5.22) applies to alternating series (see Section 5.3) as
well. Usuallyf ′(x) falls faster thanf (x) for x→∞, so the remainder term in Eq. (5.22)
converges better. It is easy to improve Eq. (5.22) by replacingx−[x] by x−[x]− 1

2 , which
varies between−1

2 and 1
2 :

∑

Ni<n≤Nf

f (n) =
∫ Nf

Ni

f (x)dx +
∫ Nf

Ni

(
x − [x] − 1

2

)
f ′(x) dx

+ 1
2

{
f (Nf )− f (Ni)

}
. (5.25)

Then thef ′(x)-integral becomes even smaller, iff ′(x) does not change sign too often. For
an application of this integral test to an alternating series see Example 5.3.1.

Example 5.2.3 RIEMANN ZETA FUNCTION

The Riemann zeta function is defined by

ζ(p)=
∞∑

n=1

n−p, (5.26)

provided the series converges. We may takef (x)= x−p, and then
∫ ∞

1
x−p dx = x−p+1

−p+ 1

∣∣∣∣
∞

1
, p 
= 1

= lnx |∞x=1, p = 1. (5.27)
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The integral and therefore the series are divergent forp ≤ 1, convergent forp > 1. Hence
Eq. (5.26) should carry the conditionp > 1. This, incidentally, is an independent proof
that the harmonic series(p = 1) diverges logarithmically. The sum of the first million
terms

∑1,000,000
n−1 is only 14.392 726. . . . �

This integral comparison may also be used to set an upper limit to the Euler–Mascheroni
constant,4 defined by

γ = lim
n→∞

( n∑

m=1

m−1− lnn

)
. (5.28)

Returning to partial sums, Eq. (5.20) yields

sn =
n∑

m=1

m−1− lnn≤
∫ n

1

dx

x
− lnn+ 1. (5.29)

Evaluating the integral on the right,sn < 1 for all n and thereforeγ ≤ 1. Exer-
cise 5.2.12 leads to more restrictive bounds. Actually the Euler–Mascheroni constant is
0.57721566. . . .

Kummer’s Test

This is the first of three tests that are somewhat more difficult to apply than the preceding
tests. Their importance lies in their power and sensitivity. Frequently, at least one of the
three will work when the simpler, easier tests are indecisive. It must be remembered, how-
ever, that these tests, like those previously discussed, are ultimately based on comparisons.
It can be shown that there is no most slowly converging series and no most slowly diverg-
ing series. This means that all convergence tests given here, including Kummer’s, may fail
sometime.

We consider a series of positive termsui and a sequence of finite positive constantsai .
If

an
un

un+1
− an+1≥ C > 0 (5.30)

for all n≥N , whereN is some fixed number,5 then
∑∞

i=1ui converges. If

an
un

un+1
− an+1≤ 0 (5.31)

and
∑∞

i=1a
−1
i diverges, then

∑∞
i=1ui diverges.

4This is the notation of National Bureau of Standards,Handbook of Mathematical Functions, Applied Mathematics Series-55
(AMS-55). New York: Dover (1972).
5With um finite, the partial sumsN will always be finite forN finite. The convergence or divergence of a series depends on the
behavior of the last infinity of terms, not on the firstN terms.
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The proof of this powerful test is remarkably simple. From Eq. (5.30), withC some
positive constant,

CuN+1≤ aNuN − aN+1uN+1
CuN+2≤ aN+1uN+1− aN+2uN+2
· · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·

Cun ≤ an−1un−1− anun.

(5.32)

Adding and dividing byC (and recalling thatC 
= 0), we obtain

n∑

i=N+1

ui ≤
aNuN

C
− anun

C
. (5.33)

Hence for the partial sumsn,

sn ≤
N∑

i=1

ui +
aNuN

C
− anun

C

<

N∑

i=1

ui +
aNuN

C
, a constant, independent ofn. (5.34)

The partial sums therefore have an upper bound. With zero as an obvious lower bound, the
series

∑
ui must converge.

Divergence is shown as follows. From Eq. (5.31) forun+1 > 0,

anun ≥ an−1un−1≥ · · · ≥ aNuN , n > N. (5.35)

Thus, foran > 0,

un ≥
aNuN

an
(5.36)

and
∞∑

i=N+1

ui ≥ aNuN

∞∑

i=N+1

a−1
i . (5.37)

If
∑∞

i=1a
−1
i diverges, then by the comparison test

∑
i ui diverges. Equations (5.30) and

(5.31) are often given in a limit form:

lim
n→∞

(
an

un

un+1
− an+1

)
= C. (5.38)

Thus forC > 0 we have convergence, whereas forC < 0 (and
∑

i a
−1
i divergent) we have

divergence. It is perhaps useful to show the close relation of Eq. (5.38) and Eqs. (5.30) and
(5.31) and to show why indeterminacy creeps in when the limitC = 0. From the definition
of limit,

∣∣∣∣an
un

un+1
− an+1−C

∣∣∣∣< ε (5.39)
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for all n≥N and allε > 0, no matter how smallε may be. When the absolute value signs
are removed,

C − ε < an
un

un+1
− an+1 <C + ε. (5.40)

Now, if C > 0, Eq. (5.30) follows fromε sufficiently small. On the other hand, ifC < 0,
Eq. (5.31) follows. However, ifC = 0, the center term,an(un/un+1)−an+1, may be either
positive or negative and the proof fails. The primary use of Kummer’s test is to prove other
tests, such as Raabe’s (compare also Exercise 5.2.3).

If the positive constantsan of Kummer’s test are chosenan = n, we have Raabe’s test.

Raabe’s Test

If un > 0 and if

n

(
un

un+1
− 1

)
≥ P > 1 (5.41)

for all n≥N , whereN is a positive integer independent ofn, then
∑

i ui converges. Here,
P = C + 1 of Kummer’s test. If

n

(
un

un+1
− 1

)
≤ 1, (5.42)

then
∑

i ui diverges (as
∑

n n
−1 diverges). The limit form of Raabe’s test is

lim
n→∞

n

(
un

un+1
− 1

)
= P. (5.43)

We have convergence forP > 1, divergence forP < 1, and no conclusion forP = 1,
exactly as with the Kummer test. This indeterminacy is pointed up by Exercise 5.2.4, which
presents a convergent series and a divergent series, with both series yieldingP = 1 in
Eq. (5.43).

Raabe’s test is more sensitive than the d’Alembert ratio test (Exercise 5.2.3) because∑∞
n=1n

−1 diverges more slowly than
∑∞

n=1 1. We obtain a more sensitive test (and one
that is still fairly easy to apply) by choosingan = n lnn. This is Gauss’ test.

Gauss’ Test

If un > 0 for all finiten and

un

un+1
= 1+ h

n
+ B(n)

n2
, (5.44)

in whichB(n) is a bounded function ofn for n→∞, then
∑

i ui converges forh > 1 and
diverges forh≤ 1: There is no indeterminate case here.
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The Gauss test is an extremely sensitive test of series convergence. It will work for all
series the physicist is likely to encounter. Forh > 1 or h < 1 the proof follows directly
from Raabe’s test

lim
n→∞

n

[
1+ h

n
+ B(n)

n2
− 1

]
= lim

n→∞

[
h+ B(n)

n

]
= h. (5.45)

If h= 1, Raabe’s test fails. However, if we return to Kummer’s test and usean = n lnn,
Eq. (5.38) leads to

lim
n→∞

{
n lnn

[
1+ 1

n
+ B(n)

n2

]
− (n+ 1) ln(n+ 1)

}

= lim
n→∞

[
n lnn · n+ 1

n
− (n+ 1) ln(n+ 1)

]

= lim
n→∞

(n+ 1)

[
lnn− lnn− ln

(
1+ 1

n

)]
. (5.46)

Borrowing a result from Section 5.6 (which is not dependent on Gauss’ test), we have

lim
n→∞

−(n+ 1) ln

(
1+ 1

n

)
= lim

n→∞
−(n+ 1)

(
1

n
− 1

2n2
+ 1

3n3
· · ·
)

= −1< 0. (5.47)

Hence we have divergence forh = 1. This is an example of a successful application of
Kummer’s test when Raabe’s test had failed.

Example 5.2.4 LEGENDRE SERIES

The recurrence relation for the series solution of Legendre’s equation (Exercise 9.5.5) may
be put in the form

a2j+2

a2j
= 2j (2j + 1)− l(l + 1)

(2j + 1)(2j + 2)
. (5.48)

For uj = a2j andB(j) = O(1/j2)→ 0 (that is, |B(j)j2| ≤ C, C > 0, a constant) as
j→∞ in Gauss’ test we apply Eq. (5.45). Then, forj ≫ l,6

uj

uj+1
→ (2j + 1)(2j + 2)

2j (2j + 1)
= 2j + 2

2j
= 1+ 1

j
. (5.49)

By Eq. (5.44) the series is divergent. �

6The l dependence entersB(j) but does not affecth in Eq. (5.45).
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Improvement of Convergence

This section so far has been concerned with establishing convergence as an abstract math-
ematical property. In practice, therate of convergence may be of considerable importance.
Here we present one method of improving the rate of convergence of a convergent series.
Other techniques are given in Sections 5.4 and 5.9.

The basic principle of this method, due to Kummer, is to form a linear combination of
our slowly converging series and one or more series whose sum is known. For the known
series the collection

α1=
∞∑

n=1

1

n(n+ 1)
= 1

α2=
∞∑

n=1

1

n(n+ 1)(n+ 2)
= 1

4

α3=
∞∑

n=1

1

n(n+ 1)(n+ 2)(n+ 3)
= 1

18

...
...

...

αp =
∞∑

n=1

1

n(n+ 1) · · · (n+ p)
= 1

p · p!

is particularly useful.7 The series are combined term by term and the coefficients in the
linear combination chosen to cancel the most slowly converging terms.

Example 5.2.5 RIEMANN ZETA FUNCTION, ζ (3)

Let the series to be summed be
∑∞

n=1n
−3. In Section 5.9 this is identified as the Riemann

zeta function,ζ (3). We form a linear combination
∞∑

n=1

n−3+ a2α2=
∞∑

n=1

n−3+ a2

4
.

α1 is not included since it converges more slowly thanζ (3). Combining terms, we obtain
on the left-hand side

∞∑

n=1

{
1

n3
+ a2

n(n+ 1)(n+ 2)

}
=

∞∑

n=1

n2(1+ a2)+ 3n+ 2

n3(n+ 1)(n+ 2)
.

If we choosea2=−1, the preceding equations yield

ζ(3)=
∞∑

n=1

n−3= 1

4
+

∞∑

n=1

3n+ 2

n3(n+ 1)(n+ 2)
. (5.50)

7These series sums may be verified by expanding the forms by partial fractions, writing out the initial terms, and inspecting the
pattern of cancellation of positive and negative terms.



5.2 Convergence Tests 335

The resulting series may not be beautiful but it does converge asn−4, faster thann−3.
A more convenient form comes from Exercise 5.2.21. There, the symmetry leads to con-
vergence asn−5. �

The method can be extended, includinga3α3 to get convergence asn−5, a4α4 to get
convergence asn−6, and so on. Eventually, you have to reach a compromise between how
much algebra you do and how much arithmetic the computer does. As computers get faster,
the balance is steadily shifting to less algebra for you and more arithmetic for them.

Exercises

5.2.1 (a) Prove that if

lim
n→∞

npun =A<∞, p > 1,

the series
∑∞

n=1un converges.
(b) Prove that if

lim
n→∞

nun =A> 0,

the series diverges. (The test fails forA= 0.)
These two tests, known aslimit tests, are often convenient for establishing the conver-
gence of a series. They may be treated as comparison tests, comparing with

∑

n

n−q , 1≤ q < p.

5.2.2 If

lim
n→∞

bn

an
=K,

a constant with 0<K <∞, show that
∑

n bn converges or diverges with
∑

an.
Hint. If

∑
an converges, useb′n = 1

2K bn. If
∑

n an diverges, useb′′n = 2
K
bn.

5.2.3 Show that the complete d’Alembert ratio test follows directly from Kummer’s test with
ai = 1.

5.2.4 Show that Raabe’s test is indecisive forP = 1 by establishing thatP = 1 for the series

(a) un =
1

n lnn
and that this series diverges.

(b) un =
1

n(lnn)2
and that this series converges.

Note. By direct addition
∑100,000

2 [n(lnn)2]−1 = 2.02288. The remainder of the series
n > 105 yields 0.08686 by the integral comparison test. The total, then, 2 to∞, is
2.1097.
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5.2.5 Gauss’ test is often given in the form of a test of the ratio

un

un+1
= n2+ a1n+ a0

n2+ b1n+ b0
.

For what values of the parametersa1 andb1 is there convergence? divergence?

ANS. Convergent fora1− b1 > 1,
divergent fora1− b1≤ 1.

5.2.6 Test for convergence

(a)
∞∑

n=2

(lnn)−1 (d)
∞∑

n=1

[
n(n+ 1)

]−1/2

(b)
∞∑

n=1

n!
10n

(e)
∞∑

n=0

1

2n+ 1
.

(c)
∞∑

n=1

1

2n(2n+ 1)

5.2.7 Test for convergence

(a)
∞∑

n=1

1

n(n+ 1)
(d)

∞∑

n=1

ln

(
1+ 1

n

)

(b)
∞∑

n=2

1

n lnn
(e)

∞∑

n=1

1

n · n1/n
.

(c)
∞∑

n=1

1

n2n

5.2.8 For what values ofp andq will the following series converge?
∑∞

n=2
1

np(lnn)q
.

ANS. Convergent for

{
p > 1, all q,

p = 1, q > 1,
divergent for

{
p < 1, all q,

p = 1, q ≤ 1.

5.2.9 Determine the range of convergence for Gauss’shypergeometric series

F(α,β, γ ;x)= 1+ αβ

1!γ x + α(α + 1)β(β + 1)

2!γ (γ + 1)
x2+ · · · .

Hint. Gauss developed his test for the specific purpose of establishing the convergence
of this series.

ANS. Convergent for−1< x < 1 andx =±1 if γ > α + β.

5.2.10 A pocket calculator yields

100∑

n=1

n−3= 1.202 007.
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Show that

1.202 056≤
∞∑

n=1

n−3≤ 1.202 057.

Hint. Use integrals to set upper and lower bounds on
∑∞

n=101n
−3.

Note. A more exact value for summation ofζ(3) =∑∞
n=1n

−3 is 1.202 056 903. . . ;
ζ(3) is known to be an irrational number, but it is not linked to known constants such as
e,π, γ, ln2.

5.2.11 Set upper and lower bounds on
∑1,000,000

n=1 n−1, assuming that

(a) the Euler–Mascheroni constant is known.

ANS. 14.392 726<
1,000,000∑

n=1

n−1 < 14.392 727.

(b) The Euler–Mascheroni constant is unknown.

5.2.12 Given
∑1,000

n=1 n−1= 7.485 470. . . set upper and lower bounds on the Euler–Mascheroni
constant.

ANS. 0.5767< γ < 0.5778.

5.2.13 (From Olbers’ paradox.) Assume a static universe in which the stars are uniformly
distributed. Divide all space into shells of constant thickness; the stars in any one shell
by themselves subtend a solid angle ofω0. Allowing for the blocking out of distant
stars by nearer stars, show that the total net solid angle subtended by all stars, shells
extending to infinity, isexactly 4π . [Therefore the night sky should be ablaze with
light. For more details, see E. Harrison,Darkness at Night: A Riddle of the Universe.
Cambridge, MA: Harvard University Press (1987).]

5.2.14 Test for convergence

∞∑

n=1

[
1 · 3 · 5 · · · (2n− 1)

2 · 4 · 6 · · · (2n)

]2

= 1

4
+ 9

64
+ 25

256
+ · · · .

5.2.15 The Legendre series
∑

j evenuj (x) satisfies the recurrence relations

uj+2(x)=
(j + 1)(j + 2)− l(l + 1)

(j + 2)(j + 3)
x2uj (x),

in which the indexj is even andl is some constant (but, in this problem,not a non-
negative odd integer). Find the range of values ofx for which this Legendre series is
convergent. Test the endpoints.

ANS.−1< x < 1.
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5.2.16 A series solution (Section 9.5) of the Chebyshev equation leads to successive terms
having the ratio

uj+2(x)

uj (x)
= (k + j)2− n2

(k + j + 1)(k + j + 2)
x2,

with k = 0 andk = 1. Test for convergence atx =±1.

ANS. Convergent.

5.2.17 A series solution for the ultraspherical (Gegenbauer) functionCα
n (x) leads to the recur-

rence

aj+2= aj
(k + j)(k + j + 2α)− n(n+ 2α)

(k + j + 1)(k + j + 2)
.

Investigate the convergence of each of these series atx =±1 as a function of the para-
meterα.

ANS. Convergent forα < 1,
divergent forα ≥ 1.

5.2.18 A series expansion of the incomplete beta function (Section 8.4) yields

Bx(p, q) = xp
{

1

p
+ 1− q

p+ 1
x + (1− q)(2− q)

2!(p+ 2)
x2+ · · ·

+ (1− q)(2− q) · · · (n− q)

n!(p+ n)
xn + · · ·

}
.

Given that 0≤ x ≤ 1,p > 0, andq > 0, test this series for convergence. What happens
atx = 1?

5.2.19 Show that the following series is convergent.

∞∑

s=0

(2s − 1)!!
(2s)!!(2s + 1)

.

Note. (2s−1)!! = (2s−1)(2s−3) · · ·3·1 with (−1)!! = 1; (2s)!! = (2s)(2s−2) · · ·4·2
with 0!! = 1. The series appears as a series expansion of sin−1(1) and equalsπ/2, and
sin−1x ≡ arcsinx 
= (sinx)−1.

5.2.20 Show how to combineζ(2)=∑∞
n=1n

−2 with α1 andα2 to obtain a series converging
asn−4.
Note. ζ(2) is known:ζ(2)= π2/6 (see Section 5.9).

5.2.21 The convergence improvement of Example 5.2.5 may be carried out more expediently
(in this special case) by puttingα2 into a more symmetric form: Replacingn by n− 1,
we have

α′2=
∞∑

n=2

1

(n− 1)n(n+ 1)
= 1

4
.
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(a) Combineζ(3) andα′2 to obtain convergence asn−5.
(b) Letα′4 beα4 with n→ n− 2. Combineζ(3), α′2, andα′4 to obtain convergence as

n−7.
(c) If ζ(3) is to be calculated to six= decimal= place accuracy (error 5×10−7), how

many terms are required forζ(3) alone? combined as in part (a)? combined as in
part (b)?

Note. The error may be estimated using the corresponding integral.

ANS. (a)ζ(3)= 5

4
−

∞∑

n=2

1

n3(n2− 1)
.

5.2.22 Catalan’s constant(β(2) of M. Abramowitz and I. A. Stegun, Handbook of Mathemati-
cal Functions with Formulas, Graphs, and Mathematical Tables (AMS-55), Wash, D. C.
National Bureau of Standards (1972); reprinted Dover (1974), Chapter 23) is defined
by

β(2)=
∞∑

k=0

(−1)k(2k + 1)−2= 1

12
− 1

32
+ 1

52
· · · .

Calculateβ(2) to six-digit accuracy.
Hint. The rate of convergence is enhanced by pairing the terms:

(4k − 1)−2− (4k+ 1)−2= 16k

(16k2− 1)2
.

If you have carried enough digits in your series summation,
∑

1≤k≤N 16k/(16k2− 1)2,
additional significant figures may be obtained by setting upper and lower bounds on the
tail of the series,

∑∞
k=N+1. These bounds may be set by comparison with integrals, as

in the Maclaurin integral test.

ANS. β(2)= 0.9159 6559 4177. . . .

5.3 ALTERNATING SERIES

In Section 5.2 we limited ourselves to series of positive terms. Now, in contrast, we con-
sider infinite series in which the signs alternate. The partial cancellation due to alternating
signs makes convergence more rapid and much easier to identify. We shall prove the Leib-
niz criterion, a general condition for the convergence of an alternating series. For series
with more irregular sign changes, like Fourier series of Chapter 14 (see Example 5.3.1),
the integral test of Eq. (5.25) is often helpful.

Leibniz Criterion

Consider the series
∑∞

n=1(−1)n+1an with an > 0. If an, is monotonically decreasing(for
sufficiently largen) and limn→∞ an = 0, then the series converges. To prove this theorem,
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we examine the even partial sums

s2n = a1− a2+ a3− · · · − a2n,

s2n+2 = s2n + (a2n+1− a2n+2).
(5.51)

Sincea2n+1 > a2n+2, we have

s2n+2 > s2n. (5.52)

On the other hand,

s2n+2= a1− (a2− a3)− (a4− a5)− · · · − a2n+2. (5.53)

Hence, with each pair of termsa2p − a2p+1 > 0,

s2n+2 < a1. (5.54)

With the even partial sums boundeds2n < s2n+2 < a1 and the termsan decreasing
monotonically and approaching zero, this alternating series converges.

One further important result can be extracted from the partial sums of the same alternat-
ing series. From the difference between the series limitS and the partial sumsn,

S − sn = an+1− an+2+ an+3− an+4+ · · ·
= an+1− (an+2− an+3)− (an+4− an+5)− · · · , (5.55)

or

S − sn < an+1. (5.56)

Equation (5.56) says that the error in cutting off an alternating series whose terms are
monotonically decreasing aftern terms is less thanan+1, the first term dropped. A knowl-
edge of the error obtained this way may be of great practical importance.

Absolute Convergence

Given a series of termsun in whichun may vary in sign, if
∑ |un| converges, then

∑
un is

said to be absolutely convergent. If
∑

un converges but
∑ |un| diverges, the convergence

is calledconditional.
The alternating harmonic series is a simple example of this conditional convergence. We

have
∞∑

n=1

(−1)n−1n−1= 1− 1

2
+ 1

3
− 1

4
+ · · · + (−1)n−1

n
+ · · · , (5.57)

convergent by the Leibniz criterion; but

∞∑

n=1

n−1= 1+ 1

2
+ 1

3
+ 1

4
+ · · · + 1

n
+ · · ·

has been shown to be divergent in Sections 5.1 and 5.2.
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Note that most tests developed in Section 5.2 assume a series of positive terms. Therefore
these tests in that section guarantee absolute convergence.

Example 5.3.1 SERIES WITH IRREGULAR SIGN CHANGES

For 0< x < 2π the Fourier series (see Chapter 14.1)

∞∑

n=1

cos(nx)

n
=− ln

(
2 sin

x

2

)
(5.58)

converges, having coefficients that change sign often, but not so that the Leibniz conver-
gence criterion applies easily. Let us apply the integral test of Eq. (5.22). Using integration
by parts we see immediately that

∫ ∞

1

cos(nx)

n
dn=

[
sin(nx)

nx

]∞

1
+ 1

x

∫ ∞

n=1

sin(nx)

n2
dn

converges, and the integral on the right-hand side even converges absolutely. The derivative
term in Eq. (5.22) has the form

∫ ∞

1

(
n− [n]

){
−x

n
sin(nx)− cos(nx)

n2

}
dn,

where the second term converges absolutely and need not be considered further. Next we
observe thatg(N)=

∫ N

1 (n−[n])sin(nx)dn is bounded forN→∞, just as
∫ N sin(nx)dn

is bounded because of the periodic nature of sin(nx) and its regular sign changes. Using
integration by parts again,

∫ ∞

1

g′(n)
n

dn=
[
g(n)

n

]∞

n=1
+
∫ ∞

1

g(n)

n2
dn,

we see that the second term is absolutely convergent and that the first goes to zero at the
upper limit. Hence the series in Eq. (5.58) converges, which is hard to see from other
convergence tests.

Alternatively, we may apply theq = 1 case of the Euler–Maclaurin integration formula
in Eq. (5.168b),

n∑

ν=1

f (ν) =
∫ n

1
f (x)dx + 1

2

{
f (n)+ f (1)

}
+ 1

12

{
f ′(n)− f ′(1)

}

− 1

2

∫ 1

0

(
x2− x + 1

6

) n−1∑

ν=1

f ′′(x + ν)dx,

which is straightforward but more tedious because of the second derivative. �
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Exercises

5.3.1 (a) From the electrostatic two-hemisphere problem (Exercise 12.3.20) we obtain the
series

∞∑

s=0

(−1)s(4s + 3)
(2s − 1)!!
(2s + 2)!! .

Test it for convergence.
(b) The corresponding series for the surface charge density is

∞∑

s=0

(−1)s(4s + 3)
(2s − 1)!!
(2s)!! .

Test it for convergence.
The !! notation is explained in Section 8.1 and Exercise 5.2.19.

5.3.2 Show by direct numerical computation that the sum of the first 10 terms of

lim
x→1

ln(1+ x)= ln2=
∞∑

n=1

(−1)n−1n−1

differs from ln2 by less than the eleventh term: ln 2= 0.69314 71806. . . .

5.3.3 In Exercise 5.2.9 the hypergeometric series is shown convergent forx = ±1, if γ >

α + β. Show that there is conditional convergence forx = −1 for γ down to γ >

α + β − 1.
Hint. The asymptotic behavior of the factorial function is given by Stirling’s series,
Section 8.3.

5.4 ALGEBRA OF SERIES

The establishment of absolute convergence is important because it can be proved that ab-
solutely convergent series may be reordered according to the familiar rules of algebra or
arithmetic.

• If an infinite series is absolutely convergent, the series sum is independent of the order
in which the terms are added.

• The series may be multiplied with another absolutely convergent series. The limit of the
product will be the product of the individual series limits. The product series, a double
series, will also converge absolutely.

No such guarantees can be given for conditionally convergent series. Again consider the
alternating harmonic series. If we write

1− 1
2 + 1

3 − 1
4 + · · · = 1−

(1
2 − 1

3

)
−
(1

4 − 1
5

)
− · · · , (5.59)
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it is clear that the sum
∞∑

n=1

(−1)n−1n−1 < 1. (5.60)

However, if we rearrange the terms slightly, we may make the alternating harmonic series
converge to3

2 . We regroup the terms of Eq. (5.59), taking
(
1+ 1

3 + 1
5

)
−
(1

2

)
+
(1

7 + 1
9 + 1

11+ 1
13+ 1

15

)
−
(1

4

)

+
( 1

17+ · · · + 1
25

)
−
(1

6

)
+
( 1

27+ · · · + 1
35

)
−
(1

8

)
+ · · · . (5.61)

Treating the terms grouped in parentheses as single terms for convenience, we obtain the
partial sums

s1= 1.5333 s2= 1.0333
s3= 1.5218 s4= 1.2718
s5= 1.5143 s6= 1.3476
s7= 1.5103 s8= 1.3853
s9= 1.5078 s10= 1.4078.

From this tabulation ofsn and the plot ofsn versusn in Fig. 5.3, the convergence to
3
2 is fairly clear. We have rearranged the terms, taking positive terms until the partial sum
was equal to or greater than32 and then adding in negative terms until the partial sum just
fell below 3

2 and so on. As the series extends to infinity, all original terms will eventually
appear, but the partial sums of this rearranged alternating harmonic series converge to3

2 .
By a suitable rearrangement of terms, a conditionally convergent series may be made

to converge to any desired value or even to diverge. This statement is sometimes given

FIGURE 5.3 Alternating harmonic series — terms
rearranged to give convergence to 1.5.
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asRiemann’s theorem. Obviously, conditionally convergent series must be treated with
caution.

Absolutely convergent series can be multiplied without problems. This follows as a
special case from the rearrangement of double series. However, conditionally convergent
series cannot always be multiplied to yield convergent series, as the following example
shows.

Example 5.4.1 SQUARE OF A CONDITIONALLY CONVERGENT SERIES MAY DIVERGE

The series
∑∞

n=1
(−1)n−1
√
n

converges, by the Leibniz criterion. Its square,

[∑

n

(−1)n−1

√
n

]2

=
∑

n

(−1)n
[

1√
1

1√
n− 1

+ 1√
2

1√
n− 2

+ · · · + 1√
n− 1

1√
1

]
,

has the general term in brackets consisting ofn−1 additive terms, each of which is greater
than 1√

n−1
√
n−1

, so the product term in brackets is greater thann−1
n−1 and does not go to

zero. Hence this product oscillates and therefore diverges. �

Hence for a product of two series to converge, we have to demand as a sufficient con-
dition that at least one of them converge absolutely. To prove thisproduct convergence
theorem that if

∑
n un converges absolutely toU ,

∑
n vn converges toV, then

∑

n

cn, cn =
n∑

m=0

umvn−m

converges toUV, it is sufficient to show that the difference termsDn ≡ c0 + c1 + · · · +
c2n −UnVn→ 0 for n→∞, whereUn, Vn are the partial sums of our series. As a result,
the partial sum differences

Dn = u0v0+ (u0v1+ u1v0)+ · · · + (u0v2n + u1v2n−1+ · · · + u2nv0)

− (u0+ u1+ · · · + un)(v0+ v1+ · · · + vn)

= u0(vn+1+ · · · + v2n)+ u1(vn+1+ · · · + v2n−1)+ · · · + un+1vn+1

+ vn+1(v0+ · · · + vn−1)+ · · · + u2nv0,

so for all sufficiently largen,

|Dn|< ǫ
(
|u0| + · · · + |un−1|

)
+M

(
|un+1| + · · · + |u2n|

)
< ǫ(a +M),

because|vn+1+ vn+2+ · · · + vn+m|< ǫ for sufficiently largen and all positive integersm
as
∑

vn converges, and the partial sumsVn <B of
∑

n vn are bounded byM, because the
sum converges. Finally we call

∑
n |un| = a, as

∑
un converges absolutely.

Two series can be multiplied, provided one of them converges absolutely. Addition and
subtraction of series is also valid termwise if one series converges absolutely.



5.4 Algebra of Series 345

Improvement of Convergence,
Rational Approximations

The series

ln(1+ x)=
∞∑

n=1

(−1)n−1x
n

n
, −1< x ≤ 1, (5.61a)

converges very slowly asx approaches+1. The rate of convergence may be improved
substantially by multiplying both sides of Eq. (5.61a) by a polynomial and adjusting the
polynomial coefficients to cancel the more slowly converging portions of the series. Con-
sider the simplest possibility: Multiply ln(1+ x) by 1+ a1x:

(1+ a1x) ln(1+ x)=
∞∑

n=1

(−1)n−1x
n

n
+ a1

∞∑

n=1

(−1)n−1x
n+1

n
.

Combining the two series on the right, term by term, we obtain

(1+ a1x) ln(1+ x) = x +
∞∑

n=2

(−1)n−1
(

1

n
− a1

n− 1

)
xn

= x +
∞∑

n=2

(−1)n−1n(1− a1)− 1

n(n− 1)
xn.

Clearly, if we takea1 = 1, then in the numerator disappears and our combined series
converges asn−2.

Continuing this process, we find that(1+ 2x + x2) ln(1+ x) vanishes asn−3 and that
(1+ 3x + 3x2 + x3) ln(1+ x) vanishes asn−4. In effect we are shifting from a simple
series expansion of Eq. (5.61a) to a rational fraction representation in which the function
ln(1+ x) is represented by the ratio of a series and a polynomial:

ln(1+ x)= x +∑∞
n=2(−1)nxn/[n(n− 1)]

1+ x
.

Such rational approximations may be both compact and accurate.

Rearrangement of Double Series

Another aspect of the rearrangement of series appears in the treatment of double series
(Fig. 5.4):

∞∑

m=0

∞∑

n=0

an,m.

Let us substitute

n= q ≥ 0, m= p− q ≥ 0 (q ≤ p).
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FIGURE 5.4 Double
series — summation overn
indicated by vertical dashed

lines.

This results in the identity

∞∑

m=0

∞∑

n=0

an,m =
∞∑

p=0

p∑

q=0

aq,p−q . (5.62)

The summation overp andq of Eq. (5.62) is illustrated in Fig. 5.5. The substitution

n= s ≥ 0, m= r − 2s ≥ 0

(
s ≤ r

2

)

leads to

∞∑

m=0

∞∑

n=0

an,m =
∞∑

r=0

[r/2]∑

s=0

as,r−2s, (5.63)

FIGURE 5.5 Double series
— again, the first summation

is represented by vertical
dashed lines, but these

vertical lines correspond to
diagonals in Fig. 5.4.
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FIGURE 5.6 Double series. The
summation overs corresponds to a

summation along the almost-horizontal
dashed lines in Fig. 5.4.

with [r/2] = r/2 for r even and(r − 1)/2 for r odd. The summation overr and s of
Eq. (5.63) is shown in Fig. 5.6. Equations (5.62) and (5.63) are clearly rearrangements of
the array of coefficientsanm, rearrangements that are valid as long as we have absolute
convergence.

The combination of Eqs. (5.62) and (5.63),

∞∑

p=0

p∑

q=0

aq,p−q =
∞∑

r=0

[r/2]∑

s=0

as,r−2s, (5.64)

is used in Section 12.1 in the determination of the series form of the Legendre polynomials.

Exercises

5.4.1 Given the series (derived in Section 5.6)

ln(1+ x)= x − x2

2
+ x3

3
− x4

4
· · · , −1< x ≤ 1,

show that

ln

(
1+ x

1− x

)
= 2

(
x + x3

3
+ x5

5
+ · · ·

)
, −1< x < 1.

The original series, ln(1+ x), appears in an analysis of binding energy in crystals. It
is 1

2 the Madelung constant(2 ln2) for a chain of atoms. The second series is useful
in normalizing the Legendre polynomials (Section 12.3) and in developing a second
solution for Legendre’s differential equation (Section 12.10).

5.4.2 Determine the values of the coefficientsa1, a2, and a3 that will make
(1+ a1x + a2x

2+ a3x
3) ln(1+ x) converge asn−4. Find the resulting series.

5.4.3 Show that

(a)
∞∑

n=2

[
ζ(n)− 1

]
= 1, (b)

∞∑

n=2

(−1)n
[
ζ(n)− 1

]
= 1

2 ,

whereζ(n) is the Riemann zeta function.
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5.4.4 Write a program that will rearrange the terms of the alternating harmonic series to make
the series converge to 1.5. Group your terms as indicated in Eq. (5.61). List the first 100
successive partial sums that just climb above 1.5 or just drop below 1.5, and list the new
terms included in each such partial sum.

ANS.
n 1 2 3 4 5
sn 1.5333 1.0333 1.5218 1.2718 1.5143

5.5 SERIES OF FUNCTIONS

We extend our concept of infinite series to include the possibility that each termun may be
a function of some variable,un = un(x). Numerous illustrations of such series of functions
appear in Chapters 11–14. The partial sums become functions of the variablex,

sn(x)= u1(x)+ u2(x)+ · · · + un(x), (5.65)

as does the series sum, defined as the limit of the partial sums:
∞∑

n=1

un(x)= S(x)= lim
n→∞

sn(x). (5.66)

So far we have concerned ourselves with the behavior of the partial sums as a function
of n. Now we consider how the foregoing quantities depend onx. The key concept here is
that of uniform convergence.

Uniform Convergence

If for any smallε > 0 there exists a numberN , independent ofx in the interval[a, b] (that
is, a ≤ x ≤ b) such that

∣∣S(x)− sn(x)
∣∣< ε, for all n≥N, (5.67)

then the series is said to be uniformly convergent in the interval[a, b]. This says that for
our series to be uniformly convergent, it must be possible to find a finiteN so that the tail
of the infinite series,|∑∞

i=N+1ui(x)|, will be less than an arbitrarily smallε for all x in
the given interval.

This condition, Eq. (5.67), which defines uniform convergence, is illustrated in Fig. 5.7.
The point is that no matter how smallε is taken to be, we can always choosen large enough
so that the absolute magnitude of the difference betweenS(x) andsn(x) is less thanε for
all x, a ≤ x ≤ b. If this cannot be done, then

∑
un(x) is not uniformly convergent in[a, b].

Example 5.5.1 NONUNIFORM CONVERGENCE

∞∑

n=1

un(x)=
∞∑

n=1

x

[(n− 1)x + 1][nx + 1] . (5.68)
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FIGURE 5.7 Uniform convergence.

The partial sumsn(x)= nx(nx+1)−1, as may be verified bymathematical induction.
By inspection this expression forsn(x) holds forn= 1,2. We assume it holds forn terms
and then prove it holds forn+ 1 terms:

sn+1(x) = sn(x)+
x

[nx + 1][(n+ 1)x + 1]

= nx

[nx + 1] +
x

[nx + 1][(n+ 1)x + 1]

= (n+ 1)x

(n+ 1)x + 1
,

completing the proof.
Lettingn approach infinity, we obtain

S(0) = lim
n→∞

sn(0)= 0,

S(x 
= 0) = lim
n→∞

sn(x 
= 0)= 1.

We have a discontinuity in our series limit atx = 0. However,sn(x) is a continuous func-
tion of x,0≤ x ≤ 1, for all finite n. No matter how smallε may be, Eq. (5.67) will be
violated for all sufficiently smallx. Our series does not converge uniformly. �

Weierstrass M (Majorant) Test

The most commonly encountered test for uniform convergence is the WeierstrassM test.
If we can construct a series of numbers

∑∞
1 Mi , in which Mi ≥ |ui(x)| for all x in the

interval [a, b] and
∑∞

1 Mi is convergent, our seriesui(x) will be uniformly convergent
in [a, b].
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The proof of this WeierstrassM test is direct and simple. Since
∑

i Mi converges, some
numberN exists such that forn+ 1≥N ,

∞∑

i=n+1

Mi < ε. (5.69)

This follows from our definition of convergence. Then, with|ui(x)| ≤Mi for all x in the
intervala ≤ x ≤ b,

∞∑

i=n+1

∣∣ui(x)
∣∣< ε. (5.70)

Hence

∣∣S(x)− sn(x)
∣∣=

∣∣∣∣
∞∑

i=n+1

ui(x)

∣∣∣∣< ε, (5.71)

and by definition
∑∞

i=1ui(x) is uniformly convergent in[a, b]. Since we have specified
absolute values in the statement of the WeierstrassM test, the series

∑∞
i=1ui(x) is also

seen to beabsolutelyconvergent.
Note that uniform convergence and absolute convergence are independent properties.

Neither implies the other. For specific examples,

∞∑

n=1

(−1)n

n+ x2
, −∞< x <∞, (5.72)

and
∞∑

n=1

(−1)n−1x
n

n
= ln(1+ x), 0≤ x ≤ 1, (5.73)

converge uniformly in the indicated intervals but do not converge absolutely. On the other
hand,

∞∑

n=0

(1− x)xn = 1, 0≤ x < 1

= 0, x = 1, (5.74)

converges absolutely but does not converge uniformly in[0,1].
From the definition of uniform convergence we may show that any series

f (x)=
∞∑

n=1

un(x) (5.75)

cannot converge uniformly in any interval that includes a discontinuity off (x) if all un(x)
are continuous.

Since the WeierstrassM test establishes both uniform and absolute convergence, it will
necessarily fail for series that are uniformly but conditionally convergent.
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Abel’s Test

A somewhat more delicate test for uniform convergence has been given by Abel. If

un(x) = anfn(x),

∑
an = A, convergent

and the functionsfn(x) are monotonic[fn+1(x) ≤ fn(x)] and bounded, 0≤ fn(x) ≤M ,
for all x in [a, b], then

∑
n un(x) converges uniformly in [a, b].

This test is especially useful in analyzing power series (compare Section 5.7). Details of
the proof of Abel’s test and other tests for uniform convergence are given in the Additional
Readings listed at the end of this chapter.

Uniformly convergent series have three particularly useful properties.

1. If the individual termsun(x) are continuous, the series sum

f (x)=
∞∑

n=1

un(x) (5.76)

is also continuous.
2. If the individual termsun(x) are continuous, the series may be integrated term by

term. The sum of the integrals is equal to the integral of the sum.
∫ b

a

f (x)dx =
∞∑

n=1

∫ b

a

un(x) dx. (5.77)

3. The derivative of the series sumf (x) equals the sum of the individual term deriva-
tives:

d

dx
f (x)=

∞∑

n=1

d

dx
un(x), (5.78)

provided the following conditions are satisfied:

un(x) and
dun(x)

dx
are continuous in[a, b].

∞∑

n=1

dun(x)

dx
is uniformly convergent in[a, b].

Term-by-term integration of a uniformly convergent series8 requires only continuity of
the individual terms. This condition is almost always satisfied in physical applications.
Term-by-term differentiation of a series is often not valid because more restrictive condi-
tions must be satisfied. Indeed, we shall encounter Fourier series in Chapter 14 in which
term-by-term differentiation of a uniformly convergent series leads to a divergent series.

8Term-by-term integration may also be valid in the absence of uniform convergence.
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Exercises

5.5.1 Find the range ofuniform convergence of the Dirichlet series

(a)
∞∑

n=1

(−1)n−1

nx
, (b) ζ(x)=

∞∑

n=1

1

nx
.

ANS. (a) 0< s ≤ x <∞.
(b) 1< s ≤ x <∞.

5.5.2 For what range ofx is the geometric series
∑∞

n=0x
n uniformly convergent?

ANS.−1<−s ≤ x ≤ s < 1.

5.5.3 For what range of positive values ofx is
∑∞

n=0 1/(1+ xn)

(a) convergent? (b) uniformly convergent?

5.5.4 If the series of the coefficients
∑

an and
∑

bn are absolutely convergent, show that the
Fourier series

∑
(an cosnx + bn sinnx)

is uniformly convergent for−∞< x <∞.

5.6 TAYLOR’S EXPANSION

This is an expansion of a function into an infinite series of powers of a variablex or into
a finite series plus a remainder term. The coefficients of the successive terms of the series
involve the successive derivatives of the function. We have already used Taylor’s expansion
in the establishment of a physical interpretation of divergence (Section 1.7) and in other
sections of Chapters 1 and 2. Now we derive the Taylor expansion.

We assume that our functionf (x) has a continuousnth derivative9 in the intervala ≤
x ≤ b. Then, integrating thisnth derivativen times,

∫ x

a

f (n)(x1) dx1 = f (n−1)(x1)

∣∣∣
x

a
= f (n−1)(x)− f (n−1)(a),

∫ x

a

dx2

∫ x2

a

dx1f
(n)(x1) =

∫ x

a

dx2
[
f (n−1)(x2)− f (n−1)(a)

]
(5.79)

= f (n−2)(x)− f (n−2)(a)− (x − a)f (n−1)(a).

Continuing, we obtain
∫ x

a

dx3

∫ x3

a

dx2

∫ x2

a

dx1f
(n)(x1) = f (n−3)(x)− f (n−3)(a)− (x − a)f (n−2)(a)

− (x − a)2

2! f (n−1)(a). (5.80)

9Taylor’s expansion may be derived under slightly less restrictive conditions; compare H. Jeffreys and B. S. Jeffreys,Methods
of Mathematical Physics, 3rd ed. Cambridge: Cambridge University Press (1956), Section 1.133.
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Finally, on integrating for thenth time,
∫ x

a

dxn · · ·
∫ x2

a

dx1f
(n)(x1) = f (x)− f (a)− (x − a)f ′(a)− (x − a)2

2! f ′′(a)

− · · · − (x − a)n−1

(n− 1)! f (n−1)(a). (5.81)

Note that this expression is exact. No terms have been dropped, no approximations made.
Now, solving forf (x), we have

f (x) = f (a)+ (x − a)f ′(a)

+ (x − a)2

2! f ′′(a)+ · · · + (x − a)n−1

(n− 1)! f (n−1)(a)+Rn.
(5.82)

The remainder,Rn, is given by then-fold integral

Rn =
∫ x

a

dxn · · ·
∫ x2

a

dx1f
(n)(x1). (5.83)

This remainder, Eq. (5.83), may be put into a perhaps more practical form by using the
mean value theoremof integral calculus:

∫ x

a

g(x)dx = (x − a)g(ξ), (5.84)

with a ≤ ξ ≤ x. By integratingn times we get the Lagrangian form10 of the remainder:

Rn =
(x − a)n

n! f (n)(ξ). (5.85)

With Taylor’s expansion in this form we are not concerned with any questions of infinite
series convergence. This series is finite, and the only questions concern the magnitude of
the remainder.

When the functionf (x) is such that

lim
n→∞

Rn = 0, (5.86)

Eq. (5.82) becomes Taylor’s series:

f (x) = f (a)+ (x − a)f ′(a)+ (x − a)2

2! f ′′(a)+ · · ·

=
∞∑

n=0

(x − a)n

n! f (n)(a).11 (5.87)

10An alternate form derived by Cauchy is

Rn =
(x − ζ )n−1(x − a)

(n− 1)! f (n)(ζ ),

with a ≤ ζ ≤ x.
11Note that 0! = 1 (compare Section 8.1).
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Our Taylor series specifies the value of a function at one point,x, in terms of the value
of the function and its derivatives at a reference pointa. It is an expansion in powers of the
changein the variable,�x = x − a in this case. The notation may be varied at the user’s
convenience. With the substitutionx→ x + h anda→ x we have an alternate form,

f (x + h)=
∞∑

n=0

hn

n! f
(n)(x).

When we use theoperator D = d/dx, the Taylor expansion becomes

f (x + h)=
∞∑

n=0

hnDn

n! f (x)= ehDf (x).

(The transition to the exponential form anticipates Eq. (5.90), which follows.) An equiva-
lent operator form of this Taylor expansion appears in Exercise 4.2.4. A derivation of the
Taylor expansion in the context of complex variable theory appears in Section 6.5.

Maclaurin Theorem

If we expand about the origin(a = 0), Eq. (5.87) is known as Maclaurin’s series:

f (x)= f (0)+ xf ′(0)+ x2

2! f
′′(0)+ · · · =

∞∑

n=0

xn

n! f
(n)(0). (5.88)

An immediate application of the Maclaurin series (or the Taylor series) is in the expan-
sion of various transcendental functions into infinite (power) series.

Example 5.6.1 EXPONENTIAL FUNCTION

Let f (x)= ex . Differentiating, we have

f (n)(0)= 1 (5.89)

for all n,n= 1,2,3, . . . . Then, with Eq. (5.88), we have

ex = 1+ x + x2

2! +
x3

3! + · · · =
∞∑

n=0

xn

n! . (5.90)

This is the series expansion of the exponential function. Some authors use this series to
define the exponential function.

Although this series is clearly convergent for allx, we should check the remainder term,
Rn. By Eq. (5.85) we have

Rn =
xn

n! f
(n)(ξ)= xn

n! e
ξ , 0≤ |ξ | ≤ x. (5.91)
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Therefore

|Rn| ≤
xnex

n! (5.92)

and

lim
n→∞

Rn = 0 (5.93)

for all finite values ofx, which indicates that this Maclaurin expansion ofex converges
absolutely over the range−∞< x <∞. �

Example 5.6.2 LOGARITHM

Let f (x)= ln(1+ x). By differentiating, we obtain

f ′(x) = (1+ x)−1,

f (n)(x) = (−1)n−1(n− 1)!(1+ x)−n. (5.94)

The Maclaurin expansion (Eq. (5.88)) yields

ln(1+ x) = x − x2

2
+ x3

3
− x4

4
+ · · · +Rn

=
n∑

p=1

(−1)p−1x
p

p
+Rn. (5.95)

In this case our remainder is given by

Rn =
xn

n! f
(n)(ξ), 0≤ ξ ≤ x

≤ xn

n
, 0≤ ξ ≤ x ≤ 1. (5.96)

Now, the remainder approaches zero asn is increased indefinitely, provided 0≤ x ≤ 1.12

As an infinite series,

ln(1+ x)=
∞∑

n=1

(−1)n−1x
n

n
(5.97)

converges for−1< x ≤ 1. The range−1< x < 1 is easily established by the d’Alembert
ratio test (Section 5.2). Convergence atx = 1 follows by the Leibniz criterion (Section 5.3).
In particular, atx = 1 we have

ln2= 1− 1

2
+ 1

3
− 1

4
+ 1

5
− · · · =

∞∑

n=1

(−1)n−1n−1, (5.98)

the conditionally convergent alternating harmonic series. �

12This range can easily be extended to−1< x ≤ 1 but not tox =−1.
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Binomial Theorem

A second, extremely important application of the Taylor and Maclaurin expansions is the
derivation of the binomial theorem for negative and/or nonintegral powers.

Let f (x)= (1+ x)m, in whichm may be negative and is not limited to integral values.
Direct application of Eq. (5.88) gives

(1+ x)m = 1+mx + m(m− 1)

2! x2+ · · · +Rn. (5.99)

For this function the remainder is

Rn =
xn

n! (1+ ξ)m−nm(m− 1) · · · (m− n+ 1) (5.100)

and ξ lies between 0 andx,0≤ ξ ≤ x. Now, for n > m, (1+ ξ)m−n is a maximum for
ξ = 0. Therefore

Rn ≤
xn

n!m(m− 1) · · · (m− n+ 1). (5.101)

Note that them dependent factors do not yield a zero unlessm is a nonnegative integer;Rn

tends to zero asn→∞ if x is restricted to the range 0≤ x < 1. The binomial expansion
therefore is shown to be

(1+ x)m = 1+mx + m(m− 1)

2! x2+ m(m− 1)(m− 2)

3! x3+ · · · . (5.102)

In other, equivalent notation,

(1+ x)m =
∞∑

n=0

m!
n!(m− n)!x

n =
∞∑

n=0

(
m

n

)
xn. (5.103)

The quantity
(
m
n

)
, which equalsm!/[n!(m− n)!], is called abinomial coefficient. Al-

though we have only shown that the remainder vanishes,

lim
n→∞

Rn = 0,

for 0≤ x < 1, the series in Eq. (5.102) actually may be shown to be convergent for the
extended range−1< x < 1. Form an integer,(m− n)! = ±∞ if n >m (Section 8.1) and
the series automatically terminates atn=m.

Example 5.6.3 RELATIVISTIC ENERGY

The total relativistic energy of a particle of massm and velocityv is

E =mc2
(

1− v2

c2

)−1/2

. (5.104)

Compare this expression with the classical kinetic energy,mv2/2.
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By Eq. (5.102) withx =−v2/c2 andm=−1/2 we have

E = mc2
[
1− 1

2

(
−v2

c2

)
+ (−1/2)(−3/2)

2!

(
−v2

c2

)2

+ (−1/2)(−3/2)(−5/2)

3!

(
−v2

c2

)3

+ · · ·
]
,

or

E =mc2+ 1

2
mv2+ 3

8
mv2 · v

2

c2
+ 5

16
mv2 ·

(
v2

c2

)2

+ · · · . (5.105)

The first term,mc2, is identified as the rest mass energy. Then

Ekinetic=
1

2
mv2

[
1+ 3

4

v2

c2
+ 5

8

(
v2

c2

)2

+ · · ·
]
. (5.106)

For particle velocityv ≪ c, the velocity of light, the expression in the brackets reduces
to unity and we see that the kinetic portion of the total relativistic energy agrees with the
classical result. �

For polynomials we can generalize the binomial expansion to

(a1+ a2+ · · · + am)
n =

∑ n!
n1!n2! · · ·nm!

a
n1
1 a

n2
2 · · ·anmm ,

where the summation includes all different combinations ofn1, n2, . . . , nm with∑m
i=1ni = n. Hereni andn are all integral. This generalization finds considerable use

in statistical mechanics.
Maclaurin series may sometimes appear indirectly rather than by direct use of Eq. (5.88).

For instance, the most convenient way to obtain the series expansion

sin−1x =
∞∑

n=0

(2n− 1)!!
(2n)!! · x2n+1

(2n+ 1)
= x + x3

6
+ 3x5

40
+ · · · , (5.106a)

is to make use of the relation (from siny = x, getdy/dx = 1/
√

1− x2 )

sin−1x =
∫ x

0

dt

(1− t2)1/2
.

We expand(1− t2)−1/2 (binomial theorem) and then integrate term by term. This term-
by-term integration is discussed in Section 5.7. The result is Eq. (5.106a). Finally, we may
take the limit asx→ 1. The series converges by Gauss’ test, Exercise 5.2.5.
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Taylor Expansion — More Than One Variable

If the functionf has more than one independent variable, say,f = f (x, y), the Taylor
expansion becomes

f (x, y) = f (a, b)+ (x − a)
∂f

∂x
+ (y − b)

∂f

∂y

+ 1

2!

[
(x − a)2

∂2f

∂x2
+ 2(x − a)(y − b)

∂2f

∂x∂y
+ (y − b)2

∂2f

∂y2

]

+ 1

3!

[
(x − a)3

∂3f

∂x3
+ 3(x − a)2(y − b)

∂3f

∂x2∂y

+ 3(x − a)(y − b)2
∂3f

∂x∂y2
+ (y − b)3

∂3f

∂y3

]
+ · · · , (5.107)

with all derivatives evaluated at the point(a, b). Usingαj t = xj − xj0, we may write the
Taylor expansion form independent variables in the symbolic form

f (x1, . . . , xm)=
∞∑

n=0

tn

n!

( m∑

i=1

αi
∂

∂xi

)n

f (x1, . . . , xm)

∣∣∣
(xk=xk0,k=1,...,m)

. (5.108)

A convenient vector form form= 3 is

ψ(r + a)=
∞∑

n=0

1

n! (a ·∇)nψ(r). (5.109)

Exercises

5.6.1 Show that

(a) sinx =
∞∑

n=0

(−1)n
x2n+1

(2n+ 1)! ,

(b) cosx =
∞∑

n=0

(−1)n
x2n

(2n)! .

In Section 6.1,eix is defined by a series expansion such that

eix = cosx + i sinx.

This is the basis for the polar representation of complex quantities. As a special case we
find, with x = π , the intriguing relation

eiπ =−1.
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